一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种光伏并网智能断路器的制作方法

2022-02-25 22:08:00 来源:中国专利 TAG:


1.本发明涉及电力配电网技术领域,尤其涉及一种光伏并网智能断路器。


背景技术:

2.随着分布式发电比例的提升和电网组件的智能化,电网可以实现电力能源和数据的双向流动,从而在电网的各层面上实现更多交互,并最终实现电网系统由传统的“源随荷动”向“源荷互动”的转型。
3.根据光伏发电系统是否与电网连接,分为独立式、并网式和混合型发电系统三种类型。目前,光伏并网发电技术已经占据全球光伏发电市场的八成以上。
4.独立式发电系统也称作离网发电系统,离网发电系统不与电网直接相连直接给负载供电,包含储能环节,离网系统在偏远的无电区域比较常见,其主要目的是解决偏远地带的用电难问题,是一种降低输电线路方面成本的常见方法,但受环境因素影响较大,供电稳定性较差,一般都配有储能系统。
5.并网发电系统较离网发电系统添加了并网逆变器和孤岛检测两个环节。光伏并网发电系统的通过光伏电池板将太阳能直接转化为电能,后通过并网逆变器将直流转换为符合电网要求的交流电,输送到外部公共电网。电能难以大量储存,并网系统相较于离网系统提高了能量的利用率,且并网发电系统操作更为灵活,降低了配置成本,而配置孤岛检测环节则是为了保证在发生故障离网时的安全性。
6.混合型发电系统既可以并网发电也可以进行储能,也可以叫做可调节并网发电系统,在与电网断开时,可以独立对用户进行供电,可以选择不同的工作模式。
7.低压配电网处于整个电网的末端,具有分布广、供用电环境复杂、运行维护难度大等特点,长期以来缺乏智能高效的运行监测、运维管理手段,导致低压配电网无法实现台区、分支、户变档案精准归属,无法自动绘制完整的低压拓扑关系,无法实时上报停复电信息,无法更好的为供电服务指挥平台提供数据支撑。随着低压配电网精品台区、精益管理要求不断提高,对低压开关的光伏应用、漏电保护,线损分析,故障预警与判断,台区拓扑分析等功能提出了新的需求,也提出了设备即插即用,边缘计算技术等物联网新技术要求。
8.光伏并网系统中,孤岛效应是当电网侧突发故障或者遇到停电时与光伏发电系统断开连接,但光伏发电系统没有检测到从电网脱离的状态,单独向负载供电。若不能及时检测成功并执行分闸,将对设备造成损坏,威胁工作人员安全,故孤岛检测是光伏系统安全运行不可或缺的一部分。目前国内外已经提出了多种孤岛检测技术,主要有以下2类:1)第一类是主动检测法,通过对逆变器施加扰动信号进行孤岛检测,这类方法会降低电能质量,并且持续施加扰动信号也是不可接受的。2)第二类是被动法,通过系统中电气量的变化大小来判断是否发生孤岛,常选取公共耦合点处电压、频率、相位进行检测,这类方法的检测效果取决于检测阈值的设置,阈值较小时,会发生误判,阈值较大时比较容易检测失败,可靠性较低。总之,目前光伏并网中的孤岛检测效果不佳,仍以人工排查为主。
9.光伏并网系统中,需要实现远距离可靠有效通信:主站需实时监控光伏开关的数
据和状态,目前低压台区监测设备主要还是采用hplc通信,但其传输距离短、受干扰大、传输大量数据能力较弱。光伏应用大多是在偏远地区,新能源设备的大量接入势必会进一步降低hplc通信的成功率。光伏发电分为独立光伏发电和并网光伏发电,在独立光伏发电系统等应用场景中无法使用电力线载波通信。另外,防孤岛保护需及时上报,若电网发生故障停电,出现孤岛效应,光伏开关应能执行防孤岛保护实现跳闸,此时已无法通过电力线载波与上行终端通信,主站无法获取光伏开关的状态,不清楚是否已执行成功,不能及时通知到检修人员,存在严重安全隐患。
10.光伏并网系统中,需要实现可靠并网保护:1)分布式发电系统通过光伏逆变器未经充分监测直接并网存在隐患,如引起电网谐波超标、三相不平衡、电压波动和闪变。2)为实现可靠并网保护,不仅检测合闸状态的电能质量,还需监测合闸前即分闸状态时的进出线电能质量,而开关的进出线两端之间有很高的绝缘强度要求,目前光伏开关的出线端采用隔离光耦的方式仅采集电压的有无,合闸前无法检测出线端电能质量。
11.光伏并网系统中,需要实现自动拓扑识别:配电网 光伏发电的双源供电系统中,光伏断路器处的潮流方向是变化的,低压台区及光伏开关处于整个电网的末端,具有分布广、供用电环境复杂、运行维护难度大等特点,长期以来缺乏智能高效的运行监测、运维管理手段,导致低压配电网无法实现台区、分支、户变档案精准归属,无法自动绘制完整的电气拓扑关系,无法更好的为供电服务指挥平台提供数据支撑。


技术实现要素:

12.本发明要解决的技术问题是,提供一种能够实现可靠防孤岛保护、可靠并网保护、远距离可靠有效通信、综合数据监控,并且在光伏并网配电网中的实现自动拓扑识别的光伏并网断路器。
13.为解决上述技术问题,本发明提供一种光伏并网智能断路器:包括处理器、多维度一体化传感器、物联网通讯模块、指纹拓扑信号发送和识别模块、双端高精度采集模块、并网保护模块、防孤岛保护模块,所述处理器分别与所述物联网通讯模块、所述指纹拓扑信号发送和识别模块、所述双端高精度采集模块、所述并网保护模块、所述防孤岛保护模块连接,所述多维度一体化传感器与所述双端高精度采集模块连接。
14.所述多维度一体化传感器包括电压传感器、电流传感器和取电互感器,所述电压传感器采用圆环形闭合pcb感应线圈,所述电流传感器采用圆环形闭合pcb罗氏线圈,所述取电互感器采用圆环形闭合式磁芯绕制而成;所述电压传感器、所述电流传感器和所述取电互感器以整体灌封方式集成封装在圆环形塑胶罩壳内。所述电压传感器圆环形闭合pcb感应线圈为分别在圆环形pcb的顶层和底层绘制的高度对称的多层圆形走线,被测主回路导体从所述电压传感器中心垂直穿过。
15.所述双端高精度采集模块包括电流采样调理电路、电压采样调理回路、电流采样模块、电压采样模块,所述电流采样调理电路分别连接所述多维度一体化传感器中的电流传感器和所述电流采样模块,所述电压采样调理电路分别连接所述多维度一体化传感器中的电压传感器和所述电压采样模块。所述电流采样调理电路和所述电压采样调理回路包括对称式esd保护电路和抗混叠滤波电路,所述电流采样模块包括全差分放大积分及偏置电路和ad采样电路,所述电压采样模块包括全差分放大及偏置电路和ad采样电路。
16.所述物联网通讯模块包括nb-iot模块和hplc模块,所述nb-iot模块、所述hplc模块分别与所述处理器连接,所述nb-iot模块模块与监控主站通信连接,所述hplc模块与融合终端通信连接。
17.更进一步,所述nb-iot模块模块为bc95模块。
18.所述并网保护模块包括并网两端故障研判及保护模块、并网电能质量监测模块和恢复并网检测模块:所述并网两端故障研判及保护模块存储故障保护逻辑和整定值,用于检测电网侧或者光伏逆变侧故障,并快速响应执行分闸,将故障侧断开,并采集分闸后进出线两端的电压波形,判断故障区域,主动上报故障信息及自身遥信状态;所述并网电能质量监测模块实时监测光伏逆变和电网的电能质量,所述电能质量包括并网前监测进出线端的电压数据和并网后监测电压电流数据,当监测到数据异常则进行告警和保护分闸;所述恢复并网检测模块对光伏发电和电网的电能质量检测合格后执行自动合闸。
19.所述防孤岛保护模块包括远程监控模块和通信应答模块:所述远程监控模块用于接收主站发来的处于孤岛状态信息,并根据接收的命令执行分闸实现防孤岛保护;所述通信应答模块通过电力线载波路径实时跟上行设备通信,采用通信应答的方式来判断电力线是否畅通,若在一定时间内连续多次未应答,则判定为处于孤岛状态,并执行分闸实现防孤岛保护。
20.所述指纹拓扑信号发送和识别模块包括指纹电流特征信号发生和识别电路、指纹电流特征信号注入启动模块,所述指纹电流注入启动模块用于在与主站通信约定启动触发时间内当光伏断路器的处于分闸状态时或当潮流正向时启动指纹电流特征信号注入。
21.本发明的有益效果在于:
22.本发明公开的技术方案集成并网保护、防孤岛保护、物联网通信、自动拓扑识别、电能质量、短路等故障研判及保护等功能和应用集为一体,提升了数据源头的智能感知能力,实现全景感知与可视化监测。其中,多维度一体化传感器同时实现电压传感、电流传感、取电等多种功能,具备量程广、频率响应宽、线性度好、高集成度、高绝缘性、高可靠性等优点,同时实现参数高度一致,为实现智能模块互换提供了基础。光伏断路器内置绝缘灌封处理的闭合圆环形pcb电压传感器,圆环形闭合pcb罗氏线圈实现非接触式高精度电压、电流信号采样,实现分闸和合闸状态下的多维度监测,显著提升并网保护效果;其中,非接触电压采样方式使得开关的进出线两端之间的绝缘强度符合标准要求,分闸后现场检修不存在安全隐患。采用nb-iot hplc相结合的通信系统,确保与监控主站可靠通信,且兼容传统通信系统。采用指纹电流特征信号拓扑注入法根据电流大小和识别到的不同指纹特征信号来判断断路器上下级关系,自动形成台区电气拓扑结构,实现可视化监控,若发生故障可迅速定位故障,从而实现含光伏并网的台区可视化监测,解决低压配电网“户-变”、“户-箱-变”关系模糊问题,实现“变、线、箱、户”可观可测,提升了供电服务能力。
附图说明
23.图1是本发明实施方式的结构图。
24.图2是图1中多维度一体化传感器103的外形图。
25.图3是图1中双端高精度采集模块102具体实施方式电路结构图。
26.图4是双端高精度采集模块102中电流采样模块和电压采样模块合并使用专用计
量芯片的电路结构图。
27.图5是本发明实施方式在配电网并网使用示意图
具体实施方式
28.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
29.应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
30.还应当进一步理解,在本发明说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
31.如图1所示,一种光伏并网智能断路器包括处理器101、多维度一体化传感器103、物联网通讯模块104、指纹拓扑信号发送和识别模块106、双端高精度采集模块102、并网保护模块107、防孤岛保护模块105,所述处理器101分别与所述物联网通讯模块104、所述指纹拓扑信号发送和识别模块106、所述双端高精度采集模块102、所述并网保护模块107、所述防孤岛保护模块105连接,所述多维度一体化传感器103与所述双端高精度采集模块102连接。
32.如图2所示,图1中多维度一体化传感器103包括电压传感器、电流传感器和取电互感器,所述电压传感器采用圆环形闭合pcb感应线圈,所述电流传感器采用圆环形闭合pcb罗氏线圈,所述取电互感器采用圆环形闭合式磁芯绕制而成;所述电压传感器、所述电流传感器和所述取电互感器以整体灌封方式集成封装在圆环形塑胶罩壳201内。所述电压传感器圆环形闭合pcb感应线圈为分别在圆环形pcb的顶层和底层绘制的高度对称的多层圆形走线,被测主回路导体从所述电压传感器中心垂直穿过。
33.所述双端高精度采集模块包括电流采样调理电路、电压采样调理回路、电流采样模块、电压采样模块,所述电流采样调理电路分别连接所述多维度一体化传感器中的电流传感器和所述电流采样模块,所述电压采样调理电路分别连接所述多维度一体化传感器中的电压传感器和所述电压采样模块。如图3所示,所述电压采样调理电路包括由esd二极管z5、z9、z8组成的对称式esd保护电路,由电阻r4、r9、电容c5、c9、c8组成的抗混叠滤波电路;所述电流采样调理回路包括由esd二极管z10、z11、z12组成的对称式esd保护电路,由电阻r13、r16、电容c13、c14、c19组成的抗混叠滤波电路。所述电压采样模块采用由电阻r5、r8、r10、r3及运放u4组成的全差分放大及偏置电路和内置在处理器中ad采样电路组合而成,所述电流采样模块采用由电阻r14、r15、r12、r17、电容c11及运放u6组成的全差分放大积分及偏置电路与内置在处理器中ad采样电路组合而成。
34.如图4所示,所述电流采样模块和所述电压采样模块可以合并使用1块型号为ht7132的专用计量芯片d1,将图3中的电压采样调理电路的输出连接专用计量芯片d1的引脚va 、va-,将图3中的电流采样调理电路的输出连接专用计量芯片d1的引脚ia 、ia-。专用计量芯片的ht7132能实现多功能高精度三相电能计量,内含7路22位adc、参考电压电路以
及所有功率、能量、有效值、功率因数及频率测量的数字信号处理等电路,满足光伏断路器对线路的监测功能,不仅测量各相电流、电压有效值、功率因数、相角、频率等参数,而且实现各相以及合相的有功功率、无功功率、视在功率、有功能量及无功能量测量。ht7132提供两个spi接口,包括一个普通spi口和一个高速接口hsdc,方便与外部mcu之间进行计量及校表参数的传递,所有计量参数及校表参数均可通过spi接口读出。高速接口hsdc方便把采样数据高速传给主mcu,可进行故障研判及拓扑识别。
35.所述物联网通讯模块包括nb-iot模块和hplc模块,所述nb-iot模块、所述hplc模块分别与所述处理器连接,所述nb-iot模块模块与监控主站通信连接,所述hplc模块与融合终端通信连接。作为更优化的方案,所述nb-iot模块模块为bc95模块。
36.所述并网保护模块包括并网两端故障研判及保护模块、并网电能质量监测模块和恢复并网检测模块:所述并网两端故障研判及保护模块存储故障保护逻辑和整定值,用于检测电网侧或者光伏逆变侧故障,并快速响应执行分闸,将故障侧断开,并采集分闸后进出线两端的电压波形,判断故障区域,主动上报故障信息及自身遥信状态;所述并网电能质量监测模块实时监测光伏逆变和电网的电能质量,所述电能质量包括并网前监测进出线端的电压数据和并网后监测电压电流数据,当监测到数据异常则进行告警和保护分闸;所述恢复并网检测模块对光伏发电和电网的电能质量检测合格后执行自动合闸。如图5所示,光伏并网发电系统的通过光伏电池板将太阳能直接转化为电能,后通过并网逆变器将直流转换为符合电网要求的交流电,输送到外部公共电网。当电网侧或者光伏逆变侧发生故障后,光伏断路器并网保护模块根据故障保护逻辑和整定值进行故障研判,实现短路、接地、剩余电流等故障保护,并快速响应执行分闸,将故障侧断开,保护非故障侧的设备并使其供电系统保持正常工作,并采集分闸后进出线两端的电压波形,判断故障区域,同时主动上报故障信息及自身遥信状态。光伏断路器实时监测光伏逆变和电网的电能质量,并网前监测进出线端的电压数据,并网后监测电压电流数据。包括电压合格率、电压频率偏差、电压谐波多次谐波分量、电压三相不平衡率、电流谐波多次谐波分量、功率因数、电流三相不平衡率等数据。当光伏断路器监测到数据异常则进行告警和保护分闸。光伏断路器能自动诊断故障恢复情况和电能质量后执行并网。为避免造成相互影响,在故障排除后合闸前,光伏断路器对进出线端进行电能质量检测,即对光伏发电和电网的电能质量检测合格后执行自动合闸,及时恢复用户正常用电。
37.所述防孤岛保护模块包括远程监控模块和通信应答模块:所述远程监控模块用于接收主站发来的处于孤岛状态信息,并根据接收的命令执行分闸实现防孤岛保护;所述通信应答模块通过电力线载波路径实时跟上行设备通信,采用通信应答的方式来判断电力线是否畅通,若在一定时间内连续多次未应答,则判定为处于孤岛状态,并执行分闸实现防孤岛保护。如图5所示,后台主站远程监控台区所有断路器状态,包括光伏断路器,当电网发生故障或者停电检修,使上级断路器处于分闸状态,上级断路器会从进线端通过nb-iot或hplc通信主动将信息上传至主站,主站根据此前形成的台区电气拓扑关系,找出处于分闸状态的断路器以下的光伏断路器,但此时断路器包括光伏断路器无法通过hplc跟主站快速有效的通信,主站可通过光伏断路器集成的nb-iot发送信息通知其处于孤岛状态,光伏断路器根据接收的命令执行分闸实现防孤岛保护。另外,光伏断路器还可通过电力线载波路径实时跟上行设备通信,通过通信应答模块来判断电力线是否畅通,若在一定时间内连续
多次未应答,则判定为处于孤岛状态。
38.所述指纹拓扑信号发送和识别模块包括指纹电流特征信号发生和识别电路、指纹电流特征信号注入启动模块,所述指纹电流注入启动模块用于在与主站通信约定启动触发时间内当光伏断路器的处于分闸状态时或当潮流正向时启动指纹电流特征信号注入。如图5所示,光伏断路器处于台区的最末端,在满足启动条件时注入指纹特征信号,当前时刻该特征信号只沿光伏断路器与变压器之间的线路流通,不跨分支线,更不跨台区,智能断路器实时采集电流数据,当前时刻有且仅有此条线路中的智能断路器能采集到拓扑信号并进行识别,识别成功后将地址、识别时间、电流等信息将数据上传至融合终端或能源控制器汇总分析,即完成此条路线的拓扑结构,根据电流大小和识别到的不同指纹特征信号来判断断路器上下级关系,形成台区电气拓扑结构,实现可视化监控,若发生故障可迅速定位故障点。
39.本发明实施例可以根据实际需要进行顺序调整、合并和删减。
40.实施例对本方案进行了详细的介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献