一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种地表裂隙红外遥感监测系统及方法与流程

2022-02-22 23:00:30 来源:中国专利 TAG:


1.本发明涉及地震勘探减损开采领域,尤其涉及一种地表裂隙红外遥感监测系统及方法。


背景技术:

2.煤炭是工业基础发展的基石,我国更是以煤炭资源为主的能源国家。近些年来,随着对西部浅埋煤层大量的开采,上覆岩层运移遭到破坏,采空区上覆岩层裂隙发育贯通至地表,造成了由空气进入采空区所引起的采空区自燃。进入雨季后,地表的裂隙经过雨水的冲刷形成沟壑,随之而来的水土资源流失使地表生态植被遭到破坏,加剧了荒漠化发展。因此,亟需一种方法来精确识别矿区地表裂隙,分析地表裂隙发育规律,从而针对上述一系列环境问题及时采取有效的应对措施。
3.目前,在西部覆岩的采动破坏裂隙发育动态的探测方面,大部分方法是通过地质雷达探测和瞬变电磁仪进行探测,在施工和探测上具有局限性,耗费人力资源成本较大,且探测的结果精准度往往不高,在矿区大范围区域探测地表裂缝尤为困难。


技术实现要素:

4.针对上述技术问题,本发明提出了一种地表裂隙红外遥感监测方法及系统,用以准确快速地识别地表裂隙,保证对地表裂隙的及时处理,消除地表裂隙给地面和地下采矿空间带来的安全隐患。
5.根据本发明的一个方面,提供了一种地表裂隙红外遥感监测系统,包括:
6.飞行装置,其包括无人机和用于控制所述无人机飞临目标区域上方的遥控器;
7.红外图像采集装置,其设置在所述无人机下方,用于由所述无人机携带到所述目标区域上方采集所述目标区域的地表红外图像;
8.图像处理装置,其用于接收所述红外图像采集装置采集的所述目标区域的地表红外图像,并对所述目标区域的地表红外图像进行图像处理,以识别所述目标区域中的地表裂隙的物理特征;其中,所述图像处理包括根据图像灰度识别裂隙、根据图像温度信息识别裂隙和图像拼接中的至少一种。
9.根据本发明的一个实施例,所述红外图像采集装置包括红外热像仪和与所述红外热像仪连接的存储模块,其中,所述存储模块用于存储所述红外热像仪所拍摄的图像信息。
10.根据本发明的一个实施例,所述飞行装置还包括定位模块,用于实时定位所述无人机的地理位置;
11.所述存储模块还与所述定位模块连接,用于在存储图像信息的同时记录图像的拍摄地点。
12.根据本发明的一个实施例,所述遥控器还与所述红外热像仪远程连接,用于控制所述红外热像仪的启停和/或所述红外热像仪的拍摄焦距。
13.根据本发明的一个实施例,所述红外图像采集装置还包括与所述红外热像仪连接
的无线通信模块,用于将所述红外热像仪所拍摄的图像信息实时传送给所述图像处理装置。
14.根据本发明的一个实施例,所述红外图像采集装置以可拆卸的方式设置在所述无人机上。
15.根据本发明的一个实施例,所述无人机为六旋翼式无人机。
16.根据本发明的另一个方面,还提供了一种地表裂隙红外遥感监测的方法,包括以下步骤:
17.根据矿区的地质资料,将所述矿区划分为若干子区域,对划分好的子区域进行定位、编号,并选择各个子区域的中心点作为图像采集点,记录各个图像采集点的地理坐标;
18.当利用遥控器操控无人机飞临各个子区域的图像采集点的上方时,利用无人机所携带的红外图像采集装置采集各个子区域的地表红外图像;
19.对所有子区域的地表红外图像进行图像处理,以识别矿区中的地表裂隙的物理特征;其中,所述图像处理包括根据图像灰度识别裂隙、根据图像温度信息识别裂隙和图像拼接中的至少一种。
20.根据本发明的一个实施例,在每个子区域的图像采集点的上方,于同一高度调整红外图像采集装置的拍摄焦距,以获取子区域的清晰的地表红外图像。
21.根据本发明的一个实施例,所述矿区中的地表裂隙的物理特征包括裂隙的位置、长度和宽度。
22.与现有技术相比,上述方案中的一个或多个实施例可以具有如下优点或有益效果:
23.本发明采用飞行装置搭载红外热像仪对矿区地表进行拍摄,实现大面积地表的快速监测且同时对裂隙位置进行记录,大大减小了现场人员数量和人员工作量;采用红外热像仪对地面温度信息进行采集,对光线等外部条件适应性较好;图像处理包括图像灰度处理和图像温度信息提取,地表裂隙识别精度较高。
附图说明
24.附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例共同用于解释本发明,并不构成对本发明的限制。在附图中:
25.图1为本发明提供的地表裂隙红外遥感监测系统的组成示意图。
具体实施方式
26.以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达到相应技术效果的实现过程能充分理解并据以实施。本技术实施例以及实施例中的各个特征,在不相冲突前提下可以相互结合,所形成的技术方案均在本发明的保护范围之内。
27.实施例一
28.如图1所示,本实施例提供一种地表裂隙红外遥感监测系统10,该系统包括飞行装置100、红外图像采集装置200和图像处理装置300。
29.所述飞行装置100包括无人机110和用于控制所述无人机110飞临目标区域上方的
遥控器120以及用于对所述无人机110的地理位置进行定位的定位模块130。
30.在一具体实施方式中,所述无人机110可以为六旋翼式无人机。
31.所述红外图像采集装置200以可拆卸的方式设置在所述无人机下方,由所述无人机携带到目标区域的上方以采集所述目标区域的地表红外图像。
32.在一具体实施方式中,所述红外图像采集装置200优选包括红外热像仪210和与所述红外热像仪210连接的存储模块220,其中,所述存储模块220用于存储所述红外热像仪210所拍摄的图像信息。
33.此外,所述存储模块220还与所述飞行装置的定位模块130连接,用于在存储图像信息的同时记录图像的拍摄地点。
34.另外,为方便远程操控所述红外热像仪210,所述飞行装置的遥控器120还与所述红外热像仪210建立远程控制连接,用于控制所述红外热像仪210的启停以及必要时所述红外热像仪210的拍摄焦距。
35.所述图像处理装置300用于接收所述红外图像采集装置200采集的所述目标区域的地表红外图像,并对所述目标区域的地表红外图像进行图像处理,以识别所述目标区域中的地表裂隙的物理特征。
36.在具体实施时所述图像处理装置可以用来对图象进行如下处理:例如根据图像灰度识别裂隙、根据图像温度信息识别裂隙和图像拼接。
37.实施例二
38.在上述实施例一中,存储模块220可以以可拆卸的方式与红外热像仪210连接。这使得,在拍摄结束后,操作人员可以拆下存储模块220,将存储模块200与图像处理装置300(例如基地的电脑设备)直接连接,将存储模块200内的图像拷贝至图像处理装置300上,以进行图像处理。
39.与实施例一不同,在本实施例二提供的系统中,所述红外图像采集装置200还包括与所述红外热像仪210连接的无线通信模块230,用于将所述红外热像仪210所拍摄的图像信息实时地传送给所述图像处理装置300(例如勘探人员随身携带的便携式电脑)。这种设置使得操作人员可以及时快速地了解目标区域的现场地貌。这尤其适用于紧急勘探任务或对偏远地区的勘探任务。
40.实施例三
41.本实施例提供一种基于上述地表裂隙红外遥感监测系统进行地表裂隙红外遥感监测的方法,该方法主要包括如下步骤:
42.(1)根据矿区地质资料,将所属矿区划分为大小相同的方形区域,对划分好的子区域进行定位、编号,并选择各个子区域中心点作为图像采集点,记录各个图像采集点的地理坐标;
43.(2)将所述红外热像仪和所述存储模块安装于所述无人机下方,将所述存储模块和所述红外热像仪连接;
44.(3)寻找开阔地带,操作所述遥控器使所述无人机和所述红外热像仪开机,并控制所述无人机携带所述红外热像仪升上高空;
45.(4)通过所述遥控器操控所述无人机到达划分好的子区域1的图像采集点后,调整无人机的飞行高度,然后通过所述遥控器调节所述红外热像仪的拍摄焦距;
46.(5)使所述无人机飞行高度和位置保持不变,开始对子区域1进行地表红外图像拍摄,拍摄的红外图像以及拍摄的地点保存至所述存储模块内;
47.(6)在对子区域1拍摄5s后,控制所述无人机飞往子区域2的图像采集点,依次进行飞行高度和焦距的调整,对子区域2的地表进行拍摄,在对子区域2拍摄5s后前往区域3,以此类推,直至对所有子区域完成红外图像的采集工作;其中,在每个子区域的图像采集点的上方,可以于同一高度调整红外图像采集装置的拍摄焦距;
48.(7)操控所述无人机返程,降落并关机;
49.(8)拆下所述红外热像仪和所述存储模块,将所述无人机和红外热像仪分别装回设备箱,以备下次使用;
50.(9)将所述存储模块内的图像拷贝至电脑上,进行图像处理;
51.(10)根据图像处理的结果,判断出矿区地表各区域的地表裂隙的位置和发育特征(如长度、宽度),及时对地表裂隙进行填埋处理,以避免地表裂隙造成采空区漏风、引起煤炭自燃等事故。
52.上述图像处理可以包括以下内容:根据图像灰度识别裂隙、根据图像温度信息识别裂隙和图像拼接。
53.其中,根据图像灰度识别裂隙的一般步骤为:
54.(1)使用红外热像仪专业软件,在采集的图像序列中选取目标图像;
55.(2)编写matlab程序对目标图像的灰度图像进行滤波处理;
56.(3)将滤波后的图像进行高通滤波,以滤除部分无关低频信息;
57.(4)根据最终图像和图像对应的地理位置和地理坐标确定相关裂隙的位置、长度和宽度等物理特征,以便及时采取措施;
58.其中,根据图像温度信息识别裂隙的一般步骤为:
59.(1)将原始红外图像导入红外热像仪配套专业软件中,提取裂隙位置和非裂隙位置的温度信息;
60.(2)根据裂隙和非裂隙位置的温度信息,提取识别地表裂隙的阈值;
61.(3)将上述阈值在多幅图像中进行修正、验证,直至确定区分裂隙和非裂隙的红外阈值;
62.(4)根据阈值对红外图像内的地表裂隙进行查找、识别,并确定裂隙对应的地理坐标,及时采取措施;
63.以上所述,仅为本发明的具体实施案例,本发明的保护范围并不局限于此,任何熟悉本技术的技术人员在本发明所述的技术规范内,对本发明的修改或替换,都应在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献