一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

导管泵及其叶轮、泵体的制作方法

2022-02-22 19:41:32 来源:中国专利 TAG:


1.本公开涉及医疗器械领域,特别地涉及一种心脏辅助用途的设备,更特别地涉及一种导管泵及其叶轮、泵体。


背景技术:

2.介入式导管泵装置(简称血泵)可以泵送血液。以左心室辅助为例,现有技术一般将介入式导管泵装置的泵设在受试者体的左心室内,通过一个软轴带动该泵的叶轮旋转,通过电机驱动该软轴,向泵传递动力。
3.现有导管泵为了确保稳定的收缩和扩张,使其能够插入到患者的血管并可在插入后扩张。在压缩和扩张的过程中,转子(例如叶轮)和外壳通常都会相应的变形,而叶顶隙尺寸(也称泵间隙,即叶轮的径向外端与泵体外壳的内壁之间的间隔间隙)的稳定性是血泵工作稳定性的一个重要影响因素。经过仿真分析,泵体外部支架(外壳)的尺寸变化很小,对于顶隙影响最大即是叶轮外径的变化。
4.随着转速的增高,叶轮外径会持续增大,叶轮外径的持续增大会使水力学性能会迅速提高,而水力学性能的提高会反向推动叶轮直径的增大,这就导致叶轮稳定高效工作的范围很小,对于泵的效能产生消极影响。
5.再者,随着转速的增大,叶轮外径的持续增大很容易超过设计工作点,导致叶轮与支架产生刮擦,血泵工作失效。


技术实现要素:

6.鉴于上述不足,本公开的一个目的是提供一种能够降低叶轮在工作转动过程中的外径变化量的导管泵及其叶轮、泵体。
7.本公开还有一个目的提供一种能够稳定地保持泵间隙的导管泵及其叶轮、泵体。
8.为达到上述至少一个目的,本发明采用如下技术方案:
9.一种导管泵用叶轮,所述叶轮能够容纳在所述导管泵的泵壳内旋转,包括轮毂以及设置于轮毂上的叶片。叶片具有叶顶、设置于轮毂上的叶根以及位于叶根和叶顶之间的反折部。叶根在径向上沿第一周向朝向反折部倾斜延伸,反折部在径向上沿与第一周向相反的第二周向朝向叶片的叶项倾斜延伸。第一周向与叶轮旋转方向相反。
10.优选的,叶轮具有不旋转时的自然展开状态和对应最大工作转速旋转时的工作状态。叶轮从自然展开状态切换至工作状态,叶顶的外径(叶轮外径)变化量小于0.5mm,优选小于0.3mm,更进一步优选小于0.1mm。进一步地,叶轮在工作状态下从最小工作转速切换至最大工作转速时,叶顶的外径变化量小于0.3mm,更进一步优选的小于0.1mm。
11.优选的,叶片包括位于叶根与反折部之间的第一部分、位于反折部和叶顶之间的第二部分。第一部分的径向长度la大于0.5倍的第二部分的径向长度,优选的,第一部分的径向la大于第二部分的径向长度。
12.优选的,叶片包括位于叶根与反折部之间的第一部分、位于反折部和叶顶之间的
第二部分。叶片具有相背对的内凹迎流面以及外凸背流面,第二部分的最大厚度大于0.7 倍的第一部分的最大厚度,进一步地,第二部分的最大厚度大于第一部分的最大厚度。其中,厚度方向为内凹迎流面或外凸背流面在横截面上的轮廓线的法线方向。
13.优选的,叶片包括位于叶根与反折部之间的第一部分、位于反折部和叶顶之间的第二部分。第一部分的横截面积在第二部分的横截面积的0.5倍以上,优选0.8倍以上。
14.优选的,在叶片的一横截面上,叶片包括位于叶根与反折部之间的第一部分、位于反折部和叶顶之间的第二部分。反折部的切线穿过轮毂的圆心;第一部分在垂直于切线方向上的长度在第二部分垂直于切线方向上的长度的0.3倍以上,优选的,0.5倍以上。
15.优选的,叶片包括位于叶根与反折部之间的第一部分、位于反折部和叶顶之间的第二部分;叶片具有相背对的内凹迎流面以及外凸背流面;其中,位于第一部分的内凹迎流面或外凸迎流面上的任意点,定义该任意点的切线具有一远离第二部分方向的切线向量该任意点的切线与轮毂的外轮廓线存在一接触点,定义轮毂的圆心具有朝向接触点的射线向量切线向量和射线向量之间的夹角β大于90度且小于180度。
16.优选的,位于第一部分的内凹迎流面或外凸迎流面上的位置点越靠近反折部其β角越大。优选的,叶根在内凹迎流面和轮毂之间设有圆弧过渡部,和/或,叶根在外凹迎流面和轮毂之间设有圆弧过渡部。
17.一种导管泵用叶轮,叶轮能够容纳在导管泵的泵壳内旋转,包括轮毂以及设置于轮毂上的叶片。叶片具有叶顶、设置于轮毂上的叶根以及位于叶根和叶顶之间的反折部。在叶片具有最大外径的横截面上,叶片的叶根在径向上沿与叶轮旋转方向相反的第一周向朝向反折部倾斜延伸;反折部在径向上沿与第一周向相反的第二周向朝向叶片的叶顶倾斜延伸。
18.一种导管泵用叶轮,叶轮能够容纳在导管泵的泵壳内旋转;叶轮包括轮毂以及设置于轮毂上的叶片。叶片叶顶、具有设置于轮毂上的叶根。叶轮在工作状态下从最小工作转速切换至最大工作转速时,叶顶的外径变化量小于0.3mm。更进一步地,叶顶的外径变化量小于0.1mm。
19.一种导管泵的泵体,泵体具有血液出口和血液进口的泵壳、容纳在泵壳内可操纵地旋转以从血液进口向血液出口泵送血液的叶轮;泵体具有适于介入受试者的脉管系统或者在受试者脉管系统中输送的径向收折状态、对应叶轮不旋转时的自然展开状态和对应叶轮旋转时的工作状态。在泵体从自然展开状态切换至工作状态的过程中,叶轮被配置为其外径变化量小于0.5mm,优选小于0.3mm,更进一步地,小于0.1mm。
20.优选的,叶轮被配置为其外径保持不变或增加量小于0.3mm。
21.优选的,泵壳包括限定血液流动通道的覆膜以及支撑展开覆膜的支架;叶轮被容纳在支架内;在泵体由自然展开状态切换至工作状态的过程中,支架被配置为不参与引起覆膜的弹性变形和塑性变形,或者,泵体处于工作状态下,支架被配置为不参与引起覆膜的弹性变形和塑性变形。
22.优选的,在泵体由自然展开状态切换至工作状态的过程中,支架的外径的增大率不超过1%。
23.优选的,在泵体由自然展开状态切换至工作状态的过程中,覆膜的形变不超过其弹性变形极限,或者,泵体处于工作状态下,覆膜的形变不超过其弹性变形极限。
24.优选的,叶轮包括固定套设在叶轮轴上的轮毂以及设置于轮毂上的叶片;叶片具有设置于轮毂上的叶根、远离轮毂的叶顶;叶顶和支架的内壁之间限定有泵间隙;泵间隙在径向上的间隙宽度小于1.5mm。
25.优选的,在泵体由自然展开状态切换至工作状态的过程中,泵间隙在径向上的间隙宽度变化量小于0.5mm。
26.优选的,导管泵的泵体包括如上任意一项的叶轮。
27.一种导管泵,包括:马达、穿设在导管中且近端与马达的输出轴传动连接的驱动轴、可通过导管被输送至心脏的期望位置泵送血液的泵体。泵体包括:如上任意一项的叶轮和容纳叶轮的泵壳,或者,如上任意一项的泵体;泵体的泵壳连接至导管的远端,叶轮连接驱动轴的远端。
28.采用本实施例的方案,本实施例的叶轮的叶片利用位于反折部内侧的第一部分来平衡位于反折部外侧的第二部分的径向扩展量,通过设有反折部来设置内外不同延伸方向的部分来平衡转动时产生的径向直径变化,减低叶轮因转速的增高而使得叶轮外径过渡变化,能够使得叶轮的水力学性能保持稳定,进而保持叶轮在工作转速范围内工作时可以持续稳定地高效工作。
29.本实施例的叶轮在工作转速范围内外径变化量保持不变或位于较小的变化范围,具有较佳的外径稳定保持能力,使血泵在较宽的转速范围内保持工作的稳定性,性能和转速的线性匹配,提高血泵的可用程度。
附图说明
30.图1是本公开一个实施例提供的导管泵立体示意图;
31.图2是图1的泵壳示意图;
32.图3是本公开另一个实施例提供的泵壳示意图;
33.图4是图3的主视图;
34.图5是图4的支架结构示意图;
35.图6是图5的主视图;
36.图7是图6的a-a剖面图;
37.图8是本公开另一个实施例提供的支架立体图;
38.图9是图8的剖面图;
39.图10是图1的部分示意图;
40.图11是图10的支架与叶轮装配示意图;
41.图12是图10的叶轮装配示意图;
42.图13是图12的叶轮立体示意图;
43.图14是图13的侧视图;
44.图15是图10的泵体剖视图;
45.图16是图15的a-a剖面图。
46.附图标记说明:
47.1、动力组件;2、耦合器;3、导管;4、泵体;5、无创支撑件;6、远端轴承室; 106、血液进口;320、近端轴承室;310、驱动轴;355、叶轮轴;
48.100、覆膜;101、锥形段;102、覆膜远端;103、圆筒段;105、血液出口;
49.200、支架;201、支架段;202、锥形支架近端;203、锥形支架远端;204、连接支腿;2041、杆体;2042、腿端;205、连接次管;210、连接孔;211、定位扣;300、抗扩展元件;
50.410、叶轮;411、叶片;412、轮毂;418、迎流面;419、背流面;a、第一部分; b、第二部分;d2、外反折位置点;d3、内反折位置点;450、轨迹圆;4111、叶顶;4112、叶根;4113、外径不变段;4115、过渡线;4116、过渡部位;4121、轮毂近端;4122、轮毂远端。
具体实施方式
51.为了使本技术领域的人员更好地理解本公开中的技术方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
52.需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的另一个元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中另一个元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
53.除非另有定义,本文所使用的所有的技术和科学术语与属于本公开的技术领域的技术人员通常理解的含义相同。本文中在本公开的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本公开。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
54.本发明所用术语“近”、“远”和“前”、“后”是相对于操纵介入式导管泵的临床医生而言的。术语“近”、“后”是指相对靠近临床医生的部分,术语“远”、“前”则是指相对远离临床医生的部分。例如,体外部分在近端及后端,介入的体内部分在远端及前端。
55.本发明实施例的导管泵用于针对心脏功能衰竭进行辅助,可向心脏泵送血液,实现心脏的部分泵血功能。在适用于左心室辅助的场景中,导管泵将血液从左心室泵入主动脉,为血液循环提供支持,减少受试者心脏的工作负荷,或者在心脏泵血能力不足时提供额外持续的泵血动力支持。
56.当然,导管泵也可以依托介入式手术将其按照期望介入到受试者的其他目标位置,例如右心室、血管、或者其他器官内部。
57.请参阅图1、图2,本公开实施例的导管泵包括动力组件1和工作组件。动力组件1 包括壳体以及收纳在壳体内并具有输出轴的马达,工作组件包括导管3、穿设在导管3 中的驱动轴310、泵体4。
58.泵体4可通过导管3被输送至心脏的期望位置例如左心室内泵送血液,包括具有血液进口106和血液出口105的泵壳、收纳在泵壳内的叶轮410。马达设于导管3的近端,通过耦合器2连接导管3,并通过驱动轴310驱动叶轮410旋转泵血。泵体4的泵壳连接至导管3的远端,叶轮410连接驱动轴310的远端。
59.泵壳包括限定血液流动通道的覆膜100,进一步包括用于支撑展开覆膜100的支架 200,支架200的近端和导管3远端连接。支架200的近端设有连接次管205,通过在连接次管
205上设有构成母扣的连接孔210,与导管3形成卡扣方式的机械连接构造。
60.叶片411由柔弹性材料制成,在被收折时蓄能,在外界的约束撤除后,叶片411的蓄能释放,使叶片411展开。叶片411为多个,多个叶片411在周向上均匀排布。
61.如图12-图14所示,叶片411在轮毂412上更靠近远端4122设置。叶片411具有外径不变段4113。叶片411在轴向的两端分别具有导边(先入水边)和随边(后入水边)。该外径不变段4113位于导边和随边之间,在导边和随边之间曲线延伸。外径不变段4113 的外径为叶片411的最大外径。外径不变段4113和导边、随边之间分别具有过渡部位 4116,通常过渡部位4116可以为倒圆结构。外径不变段4113在叶片411延伸长度的0.5 倍以上,甚至0.8倍以上。外边不变段的两端具有过渡线4115。叶顶4111具有在轴向上曲线延伸的叶顶边缘。叶顶4111边缘在导边(先入水边)和随边(后入水边)之间延伸。叶片411旋转时叶顶4111(叶梢)形成圆形轨迹(轨迹圆450),叶轮410的外径、叶顶4111外径或叶顶4111所在直径为该圆形轨迹的直径。
62.如图10-图16所示,叶轮410能够容纳在导管泵的泵壳内旋转。叶轮410包括轮毂 412以及设置于轮毂412上的叶片411。其中,叶片411具有设置于轮毂412上的叶根 4112、远离轮毂412的叶顶4111以及位于叶根4112和叶顶4111(叶梢)之间的反折部 d2d3。叶片411的叶根4112在径向上沿第一周向朝向反折部d2d3倾斜延伸。反折部 d2d3在径向上沿与第一周向相反的第二周向朝向叶片411的叶顶4111倾斜延伸。第一周向与叶轮410的旋转方向相反。第二周向与叶轮410的旋转方向相同(平行)。
63.如图16所示,叶片411具有相背对的内凹迎流面418以及外凸背流面419,叶片411的迎流面418为凹面,背流面419为凸面。叶片411至少存在一横截面(与轴向垂直的截面),该横截面为c型结构。在该横截面上,叶片411的叶根4112在径向上沿第一周向朝向反折部d2d3倾斜延伸。反折部d2d3在径向上沿与第一周向相反的第二周向朝向叶片411的叶顶4111倾斜延伸。
64.在叶片411具有最大外径的横截面上。该横截面取自外径不变段4113。较佳的,外径不变段4113任一横截面均具有反折部d2d3,反折部d2d3在内外表面(内外轮廓) 上形成相应的反折位置点d2、d3。反折部d2d3在背流面419形成一由外反折位置点 d2构成的连续的外反折线,在迎流面418形成一由内反折位置点d3构成的连续的内反折线。叶片411的叶根4112在径向上沿第一周向朝向反折部d2d3倾斜延伸。反折部 d2d3在径向上沿与第一周向相反的第二周向朝向叶片411的叶顶4111倾斜延伸。
65.叶片411包括位于叶根4112与反折部d2d3之间的第一部分a、位于反折部d2d3 和叶顶4111之间的第二部分b。第一部分a和第二部分b整体在径向上延伸,且周向延伸方向相反。
66.经发明人研究发现,叶轮410在转动时,其第一部分a和第二部分b分别受到旋转的离心力、以及流体给予叶片411的反作用力、流体背压等多个作用力,在多个作用力(共同作用力)的共同作用下由于第一部分a和第二部分b在周向上的延伸方向相反,分别在第一部分a和第二部分b所产生的效果也不同。其中,位于第一部分a径向外侧第二部分b在共同作用力下会沿径向向外进行一定程度的扩展,使得叶轮410具有直径增大的趋势。而位于第二部分b径向内侧第一部分a,在共用作用力下会沿径向向内进行一定程度的收缩,使得叶片411具有直径缩小的趋势。
67.其中,流体给予叶片411的反作用力(阻力)为主要作用力,第一部分a所延伸的第一周向与反作用力方向大致平行,该反作用力作用于第一部分a时将第一部分a向轮毂412下压,促进第一部分a朝向轮毂412移动,形成收缩趋势。第二部分b所延伸的第二周向与反作用力方向大致相反,该反作用力作用于第二部分b时将第二部分b 向后推动使其向外扩展,促使第二部分b径向展开,形成扩展趋势。
68.因此,本实施例的叶轮410的叶片411利用位于反折部d2d3内侧的第一部分a来平衡位于反折部d2d3外侧的第二部分b的径向扩展量,通过设有反折部d2d3来设置内外不同延伸方向的部分来平衡转动时产生的径向直径变化,减低叶轮410因转速的增高而使得叶轮410外径过渡变化,能够使得叶轮410的水力学性能保持稳定,进而保持叶轮410在工作转速范围内工作时可以持续稳定地高效工作。
69.叶轮410在工作转速范围内外径变化量保持不变或位于较小的变化范围,具有较佳的外径稳定保持能力,使血泵在较宽的转速范围内保持工作的稳定性,性能和转速的线性匹配,提高血泵的可用程度。
70.本实施例中,在转动过程中叶轮410外径变化量较小,进而该导管泵在工作过程中可以稳定地保持泵间隙。具体的,叶顶4111和支架200的内壁之间限定有泵间隙。泵间隙在径向上的间隙宽度小于1.5mm。
71.叶轮410具有不旋转时的自然展开状态和对应最大工作转速旋转时的工作状态。其中,叶轮410从自然展开状态切换至工作状态,叶顶4111的直径变化量小于0.5mm,也即,叶轮410的外径变化量位于
±
0.5mm范围内(外径增大量在0.5mm以内,外径减小量在0.5mm以内)。优选地,叶轮410的外径变化量小于0.3mm(
±
0.3mm范围),更进一步地,叶轮410的外径变化量小于0.1mm(
±
0.1mm范围)。
72.值得注意的是,上述数值包括从下限值到上限值之间以一个单位递增的下值和上值的所有值,在任何下值和任何更高值之间存在至少两个单位的间隔即可。
73.举例来说,阐述的叶轮410的外径变化量位于
±
0.5mm,优选为
±
0.3mm范围,更优选为
±
0.1mm范围,目的是为说明上述未明确列举的诸如 0.08、-0.05、
±
0.03等值。
74.如上述,以0.1为间隔单位的示例范围,并不能排除以适当的单位例如0.01、0.02、 0.03、0.04、0.05等数值单位为间隔的增长。这些仅仅是想要明确表达的示例,可以认为在最低值和最高值之间列举的数值的所有可能组合都是以类似方式在该说明书明确地阐述了的。
75.除非另有说明,所有范围都包括端点以及端点之间的所有数字。与范围一起使用的“大约”或“近似”适合于该范围的两个端点。因而,“大约20到30”旨在覆盖“大约 20到大约30”,至少包括指明的端点。
76.本文中出现的其他关于数值范围的限定说明,可参照上述描述,不再赘述。
77.如图16所示,第一部分a在径向上的(投影)长度la大于0.5倍的第二部分b在径向上的(投影)长度lb。也即,第一部分a的径向长度la大于0.5倍的第二部分b 的径向长度,la>0.5lb。优选的,第一部分a在径向上的(投影)长度la大于第二部分b在径向上的(投影)长度lb。
78.在有的实施例中,第一部分a的叶片411厚度大于第二部分b的叶片411厚度。第一部分a相较于第二部分b具有更稳定的自身结构,借此提升叶片411结构强度以保证流体泵
送效率。而在本实施例中,第二部分b的最大厚度大于0.7倍的第一部分a 的最大厚度。其中,厚度方向为内凹迎流面418或外凸背流面419在横截面上的轮廓线的法线方向。进一步地,第二部分b的最大厚度大于第一部分a的最大厚度。如此,通过提升第二部分b的厚度,进而提升第二部分b抗形变能力,避免向外扩张程度,借此稳定保持叶轮410外径。
79.为平衡第一部分a和第二部分b的径向变化,稳定保持叶轮410外径,第一部分a 的横截面积在第二部分b的横截面积的0.5倍以上。优选的,第一部分a的横截面积在第二部分b的横截面积的0.8倍以上。第一部分a的横截面积在第二部分b的横截面积的1.2倍以下。通过增多第一部分a及减少第二部分b,平衡第一部分a和第二部分 b所占比例,借此平衡第一部分a和第二部分b的径向变化。
80.进一步地,如图16所示,在叶片411的一横截面上,反折部d2d3的切线穿过轮毂412的圆心o。第一部分a在垂直于切线oo2方向上的长度h1为在第二部分b垂直于切线oo2方向上的长度h2的0.3倍以上,优选的,h1为h2的0.5倍以上。
81.在叶轮410的一横截面上,外凸背流面419具有一位置点d2。该位置点的切线oo2经过轮毂412的圆心o,其中,叶片411的横截面位于该切线oo2的周向一侧,或者,定义一经过该位置点与轮毂412的圆心的直线,其中,叶片411的横截面(的全部)位于该直线的周向一侧。位置点d2位于叶根4112和叶顶4111之间,该位置点即为反折部d2d3在该横截面的轮廓上所形成的外反折位置点d2。
82.如图16所示,位于第一部分a的内凹迎流面418或外凸迎流面418上的任意点,定义该任意点的切线具有一远离第二部分b方向的切线向量该任意点的切线与轮毂412的外轮廓线存在一接触点,定义轮毂412的圆心具有朝向接触点的射线向量切线向量和射线向量之间的夹角β大于90度且小于180度位于第一部分a的内凹迎流面418或外凸迎流面418上的位置点越靠近反折部d2d3其β角越大。
83.叶根4112在内凹迎流面418和轮毂412之间设有圆弧过渡部,和/或,叶根4112 在外凹迎流面418和轮毂412之间设有圆弧过渡部。其中,圆弧过渡部的曲率半径小于第一部分a的曲率半径。
84.承接上文描述,叶轮410在泵壳内可操纵地旋转以从血液进口106向血液出口105 泵送血液的叶轮410。泵体4具有适于介入受试者的脉管系统或者在受试者脉管系统中输送的径向收折状态、对应叶轮410不旋转时的自然展开状态和对应叶轮410旋转时的工作状态。
85.其中,在泵体4从自然展开状态切换至工作状态的过程中,叶轮410被配置为其外径变化量小于0.5mm。也即,叶轮410的外径变化在
±
0.5mm范围内。优选地,叶轮 410被配置为其外径变化量小于0.3mm,更进一步地,叶轮410被配置为其外径变化量小于0.1mm。叶轮410被配置为其外径保持不变或增加量小于0.3mm。
86.进一步地,叶轮410的工作状态可以取最大工作转速时的(最大转速)工作状态。如此,在泵体4从自然展开状态(叶轮410静止)切换至最大转速工作状态的过程中,叶轮410被配置为其外径(外径)变化量小于0.5mm。
87.在本实施例中,泵壳在叶轮410工作旋转过程中,内径变化较小,在泵体4由自然展开状态切换至工作状态的过程中,支架200的外径的增大率不超过1%。具体的,在泵体4由自然展开状态切换至工作状态的过程中,覆膜100的形变不超过其弹性变形极限,或者,泵
体4处于工作状态下,覆膜100的形变不超过其弹性变形极限。
88.承接上文描述,泵壳包括限定血液流动通道的覆膜100以及用于支撑展开覆膜100 的支架200。叶顶4111隙位于叶轮410的叶顶4111边缘和可折叠支架200的内壁之间。在其他实施例中,覆膜100集成有支架200,例如覆膜100内集成有螺旋状支撑体,此时叶顶隙(泵间隙)位于覆膜100内壁和叶顶4111之间。
89.其中,在泵体4由自然展开状态切换至工作状态的过程中,泵间隙在径向上的间隙宽度h3变化量小于0.5mm,进一步地小于0.3mm。具体的,叶轮410从静止旋转到最大工作转速的过程中其外径的增大量不超过0.3mm。叶轮410在工作转速范围(例如 10000-30000rpm)内时其外径的变化量在0.3mm以内。叶轮410在最低工作转速 (10000rpm)旋转至最高工作转速(30000rpm)时,叶轮410的外径的变化量在0.3mm 以内,进一步地,叶轮410的外径变化量在0.1mm以内,以稳定泵间隙。
90.在本实施例中,支架200可以设于覆膜100内,或者设在覆膜100外。叶轮收容在支架200内并位于覆膜100内,支架200支撑在覆膜100的远端102,部分支架200位于覆膜100的远端102外侧,另一部分支架200位于覆膜100内。
91.支架200向覆膜100施加展开作用力的情况下,覆膜100不会产生弹性形变和塑性形变,覆膜100具备较佳的抗变形能力。进而,在泵血过程中更好地维持形状,与稳定保持形状的叶轮相配合,借此保持泵间隙的恒定,维持泵效处于最佳工作效能。
92.覆膜100具有作为主体结构的圆筒段103和位于圆筒段103近端的锥形段101,锥形段101的近端套设于导管3外,与导管3外壁固定。导管3通过位于其远端的近端轴承室连接支架200近端,近端轴承室内设有对驱动轴310进行转动支撑的近端轴承。在一个实施例中,连接次管205直接构成近端轴承室并通过定位扣211定位固定近端轴承。
93.支架200远端设有远端轴承室6,远端轴承室6内设有对驱动轴310的远端转动支撑的远端轴承。支架200维持近端轴承室320和远端轴承室6的间距,借此为驱动轴310 提供稳定的转动支撑。驱动轴310包括穿设在导管3内的软轴和连接至软轴远端的硬轴 355(叶轮轴355),叶轮410的轮毂412套设在硬轴355上,硬轴355的近端和远端分别穿设在近端轴承和远端轴承中。借助硬轴355及两端的轴承,为叶轮在泵壳中提供稳定的强度支撑,保持叶轮在泵壳中位置的稳定。
94.耦合器2连接导管3的近端,导管3和软轴之间具有液体流道,通过液体流道输入的灌注液可以为软轴的转动提供润滑并避免转动摩擦生热。耦合器2上设有与液体流道相连通的灌注液输入部20,灌注液输入部20与液体流道连通。耦合器2的远端设有供导管3穿过的保持套260,保持套260可对导管3起到固定的作用。
95.远端轴承室6的远端连接有无创支撑件5,无创支撑件5为一柔性管体结构,表现为端部呈圆弧状或卷绕状的柔性凸起,从而无创支撑件5以无创或无损伤的方式支撑在心室内壁上,将泵体4的血液进口106与心室内壁隔开,避免泵体4在工作过程中由于血液的反作用力而使得泵体4的吸入口贴合在心室内壁上,保证泵吸的有效面积。
96.泵壳包括适于介入受试者的脉管系统或者在受试者脉管系统中输送的径向收折状态、对应叶轮不旋转时的自然展开状态和对应叶轮旋转时的工作状态。在泵壳由径向收折状态切换至自然展开状态的过程中,或者由自然展开状态切换至工作状态的过程中,覆膜100的形变不超过其塑性变形极限。
97.承接上文描述,泵壳包括限定血液流动通道的覆膜100以及支撑展开覆膜100的支架200。叶轮410被容纳在支架200内。在泵体4由自然展开状态切换至工作状态的过程中,支架200被配置为不参与引起覆膜的弹性变形和塑性变形。或者,泵体4处于工作状态下,支架200被配置为不参与引起覆膜100的弹性变形和塑性变形。
98.泵体4具有介入构型以及工作构型。在泵体4对应介入构型下,泵壳和叶轮处于径向收折状态,以便泵体4以第一外径尺寸介入受试者的脉管系统或者在脉管系统中输送。在泵体4对应工作构型下,泵壳和叶轮处于径向展开状态,以便泵体4以大于第一外径尺寸的第二外径尺寸在期望位置泵送血液。
99.泵体4包括径向收折状态和径向展开状态,泵壳可操作地在径向收折状态与径向展开状态之间切换。相比于未受力状态,覆膜100在泵壳处于径向展开状态下不发生塑性形变。
100.通过设置可收折的泵壳,使得泵壳具有较小的收折尺寸和较大的展开尺寸,以兼顾在介入/输送过程中减轻受试者痛苦且介入容易,以及提供大流量这两方面的需求。
101.支架200的多网孔尤其是菱形网孔的设计可实现较佳的实现收折,同时借助镍钛合金的记忆特性实现展开。叶片由柔弹性材料制成,在被收折时蓄能,在外界的约束撤除后,叶片的蓄能释放,使叶片展开。
102.泵壳是借助外界的约束实现收折,在约束撤除后,泵壳实现自展开。上述的外界约束的施加,通过滑动套设在导管3外的折叠鞘管(未示出)完成。当折叠鞘管在导管3 外向前移动时,可将泵壳整体收纳在其内,实现泵壳的强制收折。当折叠鞘管向后移动时,泵壳受到的径向约束消失,泵壳自展开。
103.由上述,泵壳的收折是借助折叠鞘管施加的径向约束力实现的,而泵壳包含的叶轮收纳在泵壳内。因此,实质上,泵壳的收折过程是:折叠鞘管对泵壳施加径向约束力,泵壳径向压缩时,对叶轮施加径向约束力。
104.也就是,泵壳是直接在折叠鞘管的作用下被收折,而叶轮却是直接在泵壳的作用下被收折。而如上述,叶轮具有弹性。因此,尽管处于收折状态,但叶轮收折蓄能使其始终具有径向展开的趋势,进而叶轮会与泵壳内壁接触,并对泵壳施加反作用力。
105.在折叠鞘管的约束撤除后,泵壳在自身的记忆特性作用下,支撑弹性的覆膜100展开,叶轮在释放的蓄能作用下自展开。在展开状态下,叶轮的外径小于泵壳的内径。
106.这样,叶轮的径向外端(也就是叶尖)与泵壳的内壁(具体为支架200内壁)之间保持间隔,该间隔为泵间隙。泵间隙的存在,使得叶轮能无阻碍的旋转而不发生碰壁。
107.此外,出于流体力学方面的考虑,泵间隙尺寸为较小的数值且被维持,是期望的。在本实施例中,叶轮的外径略小于作为支架200的支架内径,使得在满足叶轮旋转不碰壁的情况下,泵间隙尽可能的小。而泵间隙保持的主要实现手段是通过支架200提供的支撑强度以及覆膜100的抗扩展形变性能,该支撑强度及覆膜100的韧性可抵抗血液背压的作用而不发生过量变形,进而保持泵壳的形状稳定,则泵间隙也被稳定的保持。
108.为保证覆膜100的韧性,提供更稳定的泵间隙,稳定泵效,覆膜100发生塑性变形极限的临界点应力大于等于泵体处于最大工况时由于叶轮的旋转而导致的血液背压对覆膜100施加的力。泵体的最大工况对应于叶轮额定功率下的最大转速。此时,泵流量对应最大值,血液背压也处于最大值。
109.本实施例中,血液背压的最大值仍然未超出覆膜100发生塑性变形极限的临界点应力,进而在叶轮旋转的工作状态,覆膜100仍然不会超过塑性变形极限,以降低泵间隙的变化,稳定泵效。
110.进一步地,在泵壳由径向收折状态切换至自然展开状态的过程中,覆膜100的形变不超过其弹性变形极限。在泵壳由自然展开状态切换至工作状态的过程中,覆膜100的形变不超过其弹性变形极限。
111.覆膜100发生弹性变形极限的临界点应力大于等于泵体4处于最大工况时由于叶轮的旋转而导致的血液背压对覆膜100施加的力。如此,覆膜100在叶轮停止旋转或流体背压消失时,覆膜100依然可以依靠弹性恢复至初始状态,泵效稳定,且具有更长的使用寿命。
112.需要明确的是,本发明中的覆膜100的形变,是指覆膜100发生圆周方向的长度变形,该形变可以包括褶皱的展平,还可以包括弹性变形甚至塑性变形。在受到径向作用力时,覆膜100的形变体现为周向长度(圆周长)变大。
113.在泵壳由自然展开状态切换至工作状态的过程中,覆膜100的直径增大不超过1mm,直径增大率不超过5%,进一步地,不超过3%。借此,覆膜100在流体背压作用下的扩张变形不超过其塑性变形极限,并与叶轮410相配合稳定保持泵间隙。
114.在泵壳由自然展开状态切换至工作状态的过程中,支架被配置为不参与引起覆膜 100的变形。或者,泵壳处于工作状态下,支架被配置为不参与引起覆膜100的变形。该变形包括弹性变形和塑性变形。也就是,在泵壳由自然展开状态切换至工作状态的过程中,支架既不参与引起覆膜100的塑性形变,也不参与引起覆膜100的弹性形变。
115.在自然展开状态下,覆膜100的内径等于或略大于支架的外径。例如,覆膜100的直径为支架的外径的1倍至1.1倍。如此,从收折状态到展开状态的整个过程,因为支架的径向扩张所展开的覆膜100并未达到或超出其自身的原有形状(原有直径)。因此,支架并不引起覆膜100的周向拉伸。可以理解的,覆膜100在自然展开状态下并不存在弹性变形或塑性变形,进而支架被配置为不参与引起覆膜100的形变。
116.在本实施例中,覆膜100的材质为tpu(热塑性聚氨酯弹性体橡胶)或者pebax材质或者ptfe(聚四氟乙烯)。较佳的,覆膜100采用诸如pebax的嵌段聚醚酰胺树脂材料。覆膜100在反复形变下没有机械性能的损失,并且抗疲劳,拥有良好的回弹和弹性回复性能以及精确的尺寸稳定性。进而流体背压作用下形变不会超出塑性变形极限或弹性变形极限,稳定保持泵间隙。
117.支架200的远端形成有多个大致呈t型结构的支腿204,支腿204泵壳大致垂直的杆体2041和腿端2042。远端轴承室6外壁设有容纳槽,容纳槽包括多个大致呈轴向延伸的轴向槽和与多个轴向槽远端接通的周向槽。多个杆体2041分别嵌入对应的轴向槽中,多个腿端2042嵌入周向槽中。远端轴承室6外还套设将支腿204紧紧包裹固定以防止其从容纳槽中弹出的箍套,箍套可以为热缩管经加热后形成,以将连接支腿204束缚在远端轴承室6外壁上,实现二者的防脱固定。
118.支架200具有接触支撑覆膜100的支撑部。在自然展开状态下,至少部分支撑部与覆膜100接触。在工作状态下,至少部分支撑部与覆膜100分离。
119.具体的,泵壳在叶轮旋转驱动血液流动的状态下,覆膜100在流体背压作用下,部分褶皱被拉平,或者发生弹性变形或塑形变形,内径增大至与支撑部分离。而在覆膜100 本
身的强韧性作用下,限制了形变增大率,即使发生弹性形变或塑性形变使得覆膜100 周向伸长,但该伸长率的变化小于3%,周向伸长变化较小,进而在工作状态下依然能维持叶轮与覆膜100之间的间隔间隙,保持泵效的持续稳定。
120.支架200包括大致呈锥形的支架近端202和支架远端203,以及位于支架近端202 和支架远端203之间的大致呈圆柱形的支架段201。其中,至少部分轴向长度的支架段 201构成支撑部。覆膜100远端套设于支架段201外,被支架段201接触支撑进而构建形成稳定的圆筒形状的泵壳。覆膜100的远端端面不超出支架段201。
121.泵壳从径向收折状态转化到径向展开状态过程中,支撑部和覆膜100之间允许相对移动,覆膜100与诸如支架段201的支撑部产生接触的部位允许改变。支架200与覆膜 100的相对位置固定不发生改变。
122.支撑部与覆膜100之间仅为接触支撑,而无固定连接,进而在覆膜100展开过程中,支撑部与覆膜100之间形成一定程度相对运动,借此实现彼此的期望展开。并且,支撑部对覆膜100提供周向支撑力而不提供径向和周向的相对运动约束,允许覆膜100相对于支撑部产生径向或周向的相对运动,使得覆膜100在展开过程中与支撑部或支架所接触的部位发生改变。
123.叶轮旋转驱动血液流动状态下,覆膜100主要依靠血液的背压而直径增大,导致覆膜100与支架200分离,并不接触,支架200失去对覆膜100的支撑,进而不参与此时覆膜100的变形。
124.在泵壳由自然展开状态切换至工作状态的过程中,支架200在径向上的增大幅度低于覆膜100在径向上的增大幅度。具体的,支架200的外径增大率在覆膜100内径的增大率以下,或者,支架200的外径增大尺寸小于覆膜100内径的增大尺寸。在泵壳由自然展开状态切换至工作状态的过程中,支架200的外径的增大率不超过2%。进一步地,在泵壳由自然展开状态切换至工作状态的过程中,支架200的外径的增大率不超过1%。
125.在如图3至图9所示的可行的实施例中,为使得支架不参与引起覆膜100的弹性或塑性变形,限制支架200在叶轮工作转速范围下的形变量,泵壳还设有用于限制支架200 在径向上扩展的抗扩展元件300。在工作状态下,设置抗扩展元件300的支架200的外径小于未设置抗扩展元件300的情况下的外径。
126.在本实施例中,支架200的自然展开状态被抗扩展元件300限制。也就是说,支架 200径向扩张会导致抗扩展元件300被拉伸。但是,一旦抗扩展元件300被拉伸至一定程度,支架不能再继续扩展时,支架达到最大直径。
127.流体背压影响抗扩展元件300及支架200的径向扩展,但其径向扩展幅度被限制,其扩展幅度低于覆膜100的径向扩展幅度。在工作状态下,抗扩展元件300限制至少部分支撑部的径向扩展,使其与覆膜100分离。在具备抗扩展元件300的基础上,抗扩展元件300限制支架200在径向上的增大幅度低于覆膜100在径向上的增大幅度。
128.抗扩展元件300的直径小于覆膜100的直径。抗扩展元件300可以设在支架内侧,也可以设在支架外侧。抗扩展元件300在覆膜100内围绕于支架200设置。具体的,抗扩展元件300围绕于支架段201设置。
129.抗扩展元件300包括固定套设在支架段201外的箍环。箍环可以焊接或者卡接固定在支架段201外。如图3至图7所示的实施例,多个箍环分散套设在支架段201外。如图8、图9
所示的实施例,单个箍环(箍套)居中套设在支架段201外。箍环为金属或其他抗扩展材质,其周向抗扩展变形能力强于支架,甚至强于覆膜100,进而在工作状态下,在抗扩展元件300作用下,支架的径向增大率更小,借此与径向进一步扩展的覆膜100分离,互不接触。
130.应该理解,以上描述是为了进行图示说明而不是为了进行限制。通过阅读上述描述,在所提供的示例之外的许多实施方式和许多应用对本领域技术人员来说都将是显而易见的。因此,本教导的范围不应该参照上述描述来确定,而是应该参照所附权利要求以及这些权利要求所拥有的等价物的全部范围来确定。出于全面之目的,所有文章和参考包括专利申请和公告的公开都通过参考结合在本文中。在前述权利要求中省略这里公开的主题的任何方面并不是为了放弃该主体内容,也不应该认为发明人没有将该主题考虑为所公开的发明主题的一部分。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献