一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种基于氢氧高压掺水燃烧的不完全循环发电系统的制作方法

2022-02-22 09:09:03 来源:中国专利 TAG:


1.本发明属于高压燃烧的热力发电系统技术领域,更具体地,涉及一种基于氢氧高压掺水燃烧的不完全循环发电系统。


背景技术:

2.当前,由于人类各项生产、生活所产生的大量温室气体及其它排放,已经严重影响到全球环境以及气候,科学界已经公认应该采取有效应对措施。在热力发电领域,低碳能源是未来发展的方向之一,氢气由于高热值零污染收到社会的高度期望。但是氢气在氧气中当量燃烧时温度高达三千摄氏度,远远超出了当前材料的承受范围,所以一般难以直接利用。同时氢气价格较常用燃烧要高,经济上缺点明显,所以直接通过燃烧的方式来应用的比较少见。随着未来低碳能源技术、低碳社会趋势的不断发展,以及核能制氢、光伏制氢、太阳能热制氢技术的成熟,高压储氢技术的成熟,利用氢气作为电网储能调峰介质的可能性也在不断增加,氢气的生产成本将会有显著下降,给氢气的大规模利用提供了可能。
3.传统基于燃料燃烧的大规模、高效率发电方式一般采用燃气-蒸汽联合循环的方式,这种方式下的循环效率大约在60%左右(普通非联合循环方式效率在40%左右)。效率较高的主要原因是燃气轮机热端温度高达1300℃以上,而冷端温度和凝汽式汽轮机一致。但是,由于燃气轮机的排气温度约为500~600℃,需要采用余热锅炉等再次生成高压水蒸气才能被汽轮机用于做功,由于燃气和蒸汽介质不同以及传热温差问题,导致总体循环效率难以进一步提高,与卡诺循环理论效率有较大差距,并且存在系统复杂的缺点。显然,上述燃气-蒸汽联合循环的缺陷在于,将同属于涡轮机(燃气轮机涡轮部分和蒸汽涡轮机)做功的过程不得不用两种工质进行,两种工质之间用换热器交换热量。同时由于目前现有燃气轮机采用气体冷却热端部件温度,一方面气体的冷却能力有限,限制了其进一步提高热端温度;另一方面,消耗的气体也对整体效率提升带来了负面影响。


技术实现要素:

4.针对现有技术的以上缺陷或改进需求,本发明提供了一种基于氢氧高压掺水燃烧的不完全循环发电系统,其目的在于通过氢气和氧气直接高压燃烧的方式生成高温高压水蒸气进入涡轮机做功,简化了流程;同时利用涡轮机做功后冷凝的液态水喷入燃烧区域并且对热端部件进行水冷却,降低氢氧燃烧气体温度并同时保护热端部件,由此解决传统燃气-蒸汽联合循环系统复杂、效率提升空间有限的技术问题。
5.为实现上述目的,按照本发明的一个方面,提供了一种基于氢氧高压掺水燃烧的不完全循环发电系统,该系统包括储气罐、高压掺水燃烧装置、涡轮机、换热凝汽装置、回热加热装置、发电机、燃烧器侧壁和低压燃烧加热器;
6.所述储气罐连接于所述换热凝汽装置,所述换热凝汽装置用于将储气罐输出的氢气和氧气与涡轮机排汽进行换热后输入至所述高压掺水燃烧装置内燃烧;所述高压掺水燃烧装置连接于所述涡轮机,用于将氢气、氧气燃烧生成的水蒸气输送至所述涡轮机做功并
带动所述发电机发电;
7.所述涡轮机与所述换热凝汽装置分别连接于所述回热加热装置,经涡轮机的水蒸气经所述换热凝汽装置冷却后,部分冷凝水进入所述回热加热装置并与从涡轮机中间级抽出的蒸汽进行换热;所述回热加热装置连接于所述低压燃烧加热器,升温后的液态水经所述低压燃烧加热器加热后流入环绕于所述高压掺水燃烧装置的燃烧器侧壁内侧的冷却水流道。
8.优选地,所述换热凝汽装置连接于所述低压燃烧加热器,用于将经涡轮机的水蒸气中未完全燃烧的氢气与氧气传输至所述低压燃烧加热器中进行燃烧。
9.优选地,所述高压掺水燃烧装置的燃烧头设有三条流道,分别为流入氢气的第一流道、流入氧气的第二流道和流入液态水的第三流道,所述第三流道的液态水以雾化的喷入方式喷入氢气与氧气燃烧形成的火焰区以降低燃烧中心温度。
10.优选地,所述冷却水道用于对所述燃烧器侧壁进行冷却降温;所述冷却水道的出口分别与所述第三流道、涡轮机静叶内部的冷却流道、涡轮机动叶内部冷却流道及转子高温区内部冷却流道连通。
11.优选地,所述储气罐采用氢气、氧气分区隔热保温储存,所述储气罐内的压力为25~30mpa。
12.优选地,所述回热加热装置设有多个,多个回热加热装置依次连通并分别连接于所述涡轮机。
13.优选地,所述储气罐、换热凝汽装置、高压掺水燃烧装置、涡轮机、回热加热装置、低压燃烧加热器和冷却水流道之间通过管路连接。
14.优选地,还包括加压水泵,所述加压水泵分别设置于所述换热凝汽装置与所述回热加热装置之间的管路、所述回热加热装置与所述冷却水流道之间的管路。
15.总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
16.1、本发明提出的基于氢氧高压掺水燃烧的不完全循环发电系统,通过在氢气和氧气进行燃烧的同时向燃烧室喷入水分,降低了燃烧的中心温度,有利于燃烧器的长期稳定运行。
17.2、本发明提出的基于氢氧高压掺水燃烧的不完全循环发电系统对冷凝水进行了充分的利用,冷凝水经过回热后流经燃烧器侧壁吸收辐射热,保护了燃烧室。从水冷壁流出的水分为三路,分别进入燃烧器喷头、涡轮静叶喷嘴内部和转子高温部件内部,分别对燃烧气体、静叶喷嘴和动叶、转子进行冷却,实现了在工质高温做功同时,材料保持耐受温度范围;由于采用液态水冷却,使得部件可以耐受更高的工作温度,对提高系统循环效率具有积极效果。
18.3、本发明提出的基于氢氧高压掺水燃烧的不完全循环发电系统对高压氢氧起源的冷量也进行了利用,当前氢氧的储存方式是高压储气罐,氢氧从高压储气罐进入燃烧室之前,会因膨胀降温,本发明令高压氢氧流经冷凝器,吸收利用了能量。
19.4、本发明提出的基于氢氧高压掺水燃烧的不完全循环发电系统由于高压掺水燃烧器中氢氧比例依据化学反应比例,因此未完全燃烧的气体成分也将符合该比例,换热凝汽装置中将予以抽取进入低压燃烧加热器继续反应,在必要的情况下,可掺入一定过量空
气,确保整个系统的燃烧效率处于较高水平。
20.5、本发明提出的基于氢氧高压掺水燃烧的不完全循环发电系统相比传统朗肯循环,采用高压掺水燃烧装置替换锅炉,水蒸气替换烟气,而省掉了水冷壁、过热器、再热器之类的换热器,燃烧产物直接进入涡轮机做功,直接消除了锅炉的排烟损失,系统效率得到提高;相比布雷顿循环,由于使用高温高压水蒸气作为工质,可以采用凝汽方式使冷端温度得到最大程度降低,大大降低了常见燃气轮机的排气温度,及由此带来的热损失,同时由于使用液态水作为冷却剂,使得热端部件耐受温度也大大提高,进而循环效率得到明显提升。
附图说明
21.图1是本发明基于氢氧高压掺水燃烧的不完全循环发电系统的结构示意图。
22.在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:1-储气罐;2-高压掺水燃烧装置;3-涡轮机;4-发电机;5-换热凝汽装置;6-回热加热装置;7-燃烧器侧壁;8-低压燃烧加热器。
具体实施方式
23.为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
24.如图1所示,本发明提供一种基于氢氧高压掺水燃烧的不完全循环发电系统,包括储气罐1、高压掺水燃烧装置2、涡轮机3、发电机4、换热凝汽装置5、回热加热装置6、低压燃烧加热器8以及管路系统。
25.具体的,所述储气罐1分别引出氢气管路和氧气管路,并经过所述换热凝汽装置5与所述高压掺水燃烧装置2内部的燃烧头连接。所述换热凝汽装置5利用高压低温的氢气、氧气作为冷源,对所述涡轮机3排汽进行降温,凝结为液态水,同时这一过程也是对流入高压掺水燃烧装置内的氢气、氧气的升温过程。
26.作为本发明的优选实施例,所述储气罐1采用氢气、氧气分区隔热保温储存,压力在25~30mpa范围为宜。
27.所述高压掺水燃烧装置2的燃烧头设有三条流道,分别为流入氢气的第一流道、流入氧气的第二流道和流入液态水的第三流道,所述第三流道的液态水以雾化的喷入方式喷入氢气与氧气燃烧形成的火焰区以降低燃烧中心温度,氢气和氧气按照化学反应比例喷入,掺水量根据燃烧区域温度按需喷入。
28.在所述高压掺水燃烧装置2的燃烧器侧壁7布置有冷却水流道,所述冷却水道用于对所述燃烧器侧壁7进行冷却降温;所述冷却水道的出口分别与所述第三流道、涡轮机静叶内部的冷却流道、涡轮机动叶内部冷却流道及转子高温区内部冷却流道连通。
29.更进一步的说明,所述高压掺水燃烧装置2的水蒸气输出端通过管路连接于所述涡轮机3,所述涡轮机3利用高压掺水燃烧装置2出口的高温高压水蒸气进行膨胀做功,所述发电机4利用涡轮机输出的轴功率进行发电。
30.更进一步的说明,所述高压掺水燃烧装置2的燃烧器侧壁7的内侧设有冷却水流
道,所述冷却水流道的入口通过管路与所述回热加热装置6连通,所述回热加热装置6通过管路与所述换热凝汽装置5连通。
31.本发明的优选实施例中,所述回热加热装置6设有3个,3个回热加热装置串联连接后与所述换热凝汽装置5连通,并且3个回热加热装置还通过管路分别与所述涡轮机3连接。
32.本发明的工作过程为,氢气氧气从高压氢气氧气储气罐出发流经换热凝汽装置5与涡轮机3排汽进行换热,升温后进入所述高压掺水燃烧装置2 进行燃烧放热,同时掺入液态水进行燃烧区域降温冷却,从高压掺水燃烧装置2中燃烧生成的高温高压水蒸气进入涡轮机3做功,并带动发电机4 发电。水蒸气经过涡轮机3后温度压力降低,从末级排出,进入换热凝汽装置5进行冷凝形成液态水,流出冷凝器的水一部分排出系统,一部分再进入回热加热装置6,与从涡轮机3中间级抽出的高温蒸汽进行回热换热。换热凝汽装置5分离出来的不能凝结的氢气氧气和少量空气在低压燃烧加热器8中进行燃烧,对回热加热装置来的液态水继续加热,再流经过高压掺水燃烧装置2的燃烧器侧壁7进一步升温,然后分别进入涡轮机喷嘴、动叶片、转子高温区域及燃烧器喷头。
33.本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献