一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种增加飞机机轮刹车系统动态响应的方法及系统与流程

2022-02-19 00:41:18 来源:中国专利 TAG:


1.本发明涉及民用飞机领域,具体是一种增加飞机机轮刹车系统动态响应的方法及系统。


背景技术:

2.机轮刹车系统是飞机的最重要的系统之一,在飞机的起飞和着陆过程中起着重要的作用。机轮刹车系统主要通过控制切断阀的开关以及伺服阀输出相应刹车压力,实现飞机的刹车。机轮刹车系统的动态响应直接影响机轮刹车系统的刹车效率,当机轮刹车系统响应快时,能够有效预防机轮抱死。
3.公开号cn202624192u的实用新型中公开了一种飞机防滑机轮刹车系统,该实用新型中提出了一种通过将压力传感器信号反馈到防滑刹车控制盒,减少电液压力伺服阀零偏造成的误差,提高飞机防滑刹车控制精度。但该实用新型只是把系统连接起来,既没有把控制精度量化,更没有提出机轮刹车系统刹车压力校正方法。
4.在公开号为cn105644543a的发明中公开了一种机轮刹车系统刹车压力校正方法,该发明中通过将压力传感器信号反馈到防滑刹车控制盒,将经过防滑控制后的刹车压力指令与压力传感器信号反馈的压力进行差值运算,输出调整后的刹车压力。但该发明中当压力传感器信号故障时会导致机轮刹车系统丧失刹车能力,且根据反馈的压力信号进行差值运算调整的压力和防滑的压力为同步调整可能造成防滑控制的偏差,也没有对压力偏差的超前控制。
5.现有技术中,刹车控制器通过cpu或dsp通过脚蹬指令以及采集的速度指令输出刹车控制电流到伺服阀控制伺服阀输出相应的刹车压力,实现飞机的刹车压力控制,从输出的刹车控制电流和实际刹车压力之间存在一定的误差,同一起落架的压力偏差太大可能导致飞机的偏航,且刹车压力指令与实际的刹车压力偏差会导致刹车效率低。


技术实现要素:

6.为克服现有技术z中存在的刹车压力指令与实际刹车压力存在偏差、压力校准慢且可能导致机轮刹车系统丧失刹车能力的步骤,本发明提出了一种增加飞机机轮刹车系统动态响应的方法及系统。
7.本发明提出的增加飞机机轮刹车系统动态响应的具体过程是:
8.步骤1、判断是否激活接地保护功能:
9.在判断是否激活接地保护功能时,刹车控制器接收轮载信息、速度传感器采集的机轮速度。刹车控制器通过左机轮速度传感器获取左机轮速度v
dl
,通过右机轮速度传感器获取右机轮速度v
dr
,并通过刹车控制器中的硬件处理模块fpga将该左机轮速度 v
dl
和右机轮速度v
dr
发送到软件处理模块dsp中。
10.当获取的轮载信息指示飞机在地面且持续时间为t1或机轮速度与机轮起转速度阈值v
c
之间的关系为v
dl
≥v
c
且v
dr
≥v
c
且持续时间t2时,退出刹车控制器的接地保护功能;反
之,则激活刹车控制器的接地保护功能。式v
dl
≥v
c
且v
dr
≥v
c
中,t1为接地保护的轮载时间阈值,v
c
为机轮起转速度阈值,t2接地保护的速度时间阈值。
11.当刹车控制器接地保护功能激活后,软件处理模块dsp将输出机轮刹车系统的回油压力指令p
r
至硬件处理模块fpga。当刹车控制器接地保护功能抑制时,软件处理模块dsp将输出经防滑后的刹车压力指令p
s
至硬件处理模块fpga。
12.步骤2、确定机轮锁死保护基准速度:
13.当左机轮速度v
dl
与右机轮速度v
dr
的差值>30%时,使速度低的机轮输出至机轮刹车系统的回油压力指令为p
r
;当计算机轮锁死保护基准速度为v
lwp
时,通过软件处理模块dsp对左机轮速度v
dl
的值与右机轮速度v
dr
的值进行比较,以得到的大的数值作为机轮锁死保护基准速度。通过公式(1)计算机轮锁死保护基准速度v
lwp
14.v
lwp
=max(v
dl
,v
dr
)
ꢀꢀꢀꢀꢀꢀꢀ
(1)
15.步骤3、判断是否激活机轮锁死保护功能:
16.在判断是否激活机轮锁死保护功能时,刹车控制器接软件处理模块dsp通过机轮锁死保护基准速度v
lwp
、左机轮速度v
dl
和右机轮速度v
dr
判断是否激活机轮锁死保护功能。通过公式(2)和(3)判断是否激活机轮锁死保护。
17.v
dl
≤k1×
v
lwp
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(2)
18.v
dr
≤k1×
v
lwp
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(3)
19.式中,v
lwp
为机轮锁死保护基准速度,v
dl
为左机轮速度,v
dr
为右机轮速度,k1为激活机轮锁死保护的下限阈值。
20.如果v
dl
满足公式(2),则认为刹车控制器激活左机轮刹车控制通道的机轮锁死保护功能,软件处理模块dsp将输出机轮刹车系统的回油压力指令p
r
到硬件处理模块 fpga;如果v
dl
不满足公式(2),则认为机刹车控制器未激活左机轮刹车控制通道的机轮锁死保护功能。
21.如果v
dr
满足公式(3),则认为刹车控制器激活右机轮刹车控制通道的机轮锁死保护功能,软件处理模块dsp将输出机轮刹车系统的回油压力指令p
r
到硬件处理模块 fpga;如果v
dr
不满足公式(3),则认为机刹车控制器未激活右机轮刹车控制通道的机轮锁死保护功能轮锁死保护功能。
22.如果v
dl
满足公式(2),进入步骤4判断刹车控制器左机轮的刹车控制通道是否退出机轮锁死保护功能;如果v
dl
不满足公式(2),则进行步骤5计算左机轮的刹车压力。
23.如果v
dr
满足公式(3),进入步骤4判断刹车控制器右机轮的刹车控制通道是否退出机轮锁死保护功能;如果v
dr
不满足公式(3),则进入步骤5计算右机轮的刹车压力。
24.步骤4、判断是否退出机轮锁死保护功能:
25.在判断是否退出机轮锁死保护功能时,刹车控制器接软件处理模块dsp通过机轮锁死保护基准速度、左机轮速度v
dl
和右机轮速度v
dr
判断是否退出机轮锁死保护功能。通过公式(4)和(5)判断是否退出机轮锁死保护功能。
26.v
dl
≥k2×
v
lwp
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(4)
27.v
dr
≥k2×
v
lwp
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(5)
28.式中,k2为退出机轮锁死保护的上限阈值。
29.如果v
dl
满足公式(4),则认为刹车控制器退出左机轮刹车控制通道的机轮锁死保
护功能;如果v
dl
不满足公式(4),则认为机刹车控制器未退出左机轮刹车控制通道的机轮锁死保护功能。
30.如果v
dr
满足公式(5),则认为刹车控制器退出右机轮刹车控制通道的机轮锁死保护功能;如果v
dr
不满足公式(5),则认为机刹车控制器未退出右机轮刹车控制通道的机轮锁死保护功能轮锁死保护功能。
31.步骤5、计算速度闭环控制输出刹车压力:
32.通过刹车控制器软件处理模块dsp将得到的左机轮基准速度v
rl
与左机轮速度v
dl
差值进行pd pbm运算,得到左机轮防滑控制压力p
sl
;将得到的右机轮基准速度v
rr
与右机轮速度v
dr
差值进行pd pbm运算,得到右机轮防滑控制压力p
sr
。通过公式(6)和(7)计算得到左机轮基准速度和右机轮基准速度。
[0033][0034][0035]
式中,v
rl
为左机轮基准速度,v
rr
为右机轮基准速度,为左机轮基准速度上一时刻的值,为右机轮基准速度上一时刻的值,a为飞机加速度,t为刹车控制器的控制周期。
[0036]
刹车控制器软件执行模块dsp通过公式(8)和(9)计算p
sl
和p
sr
实现速度闭环控制。
[0037]
p
sl
=(v
rl

v
dl
)(pd pbm)
ꢀꢀꢀꢀꢀꢀꢀꢀ
(8)
[0038]
p
sr
=(v
rr

v
dr
)(pd pbm)
ꢀꢀꢀꢀꢀꢀꢀ
(9)
[0039]
式中,v
rl
为左机轮基准速度,v
rr
为右机轮基准速度。
[0040]
刹车控制器通过左指令传感器获取左脚蹬刹车压力p
l
,通过右指令传感器获取右脚蹬刹车压力p
r
。刹车控制器软件执行模块dsp通过公式(10)和(11)确定左机轮的刹车压力指令p
cl
和右机轮的刹车压力指令p
cr

[0041]
p
cl
=p
l

p
sl
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(10)
[0042]
p
cr
=p
r

p
sr
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(11)
[0043]
步骤6、判断是否输出左机轮的刹车压力指令p
cl
和右机轮的刹车压力指令p
cr

[0044]
当所述接地保护功能退出该机轮锁死保护功能时,软件处理模块dsp输出左机轮的刹车压力指令p
cl
和右机轮的刹车压力指令p
cr
至硬件处理模块fpga中。
[0045]
步骤7、判断是否进行压力闭环控制:
[0046]
在判断是否进行压力闭环控制时,通过刹车控制中的硬件处理模块fpga判断压力传感器是否故障。该压力传感器是否故障的判断条件是:检测到压力传感器开路、检测到压力传感器短路、检测到压力传感器的检测值不在工作压力范围内。
[0047]
当硬件处理模块fpga检测到的压力满足任一所述压力传感器是否故障的判断条件,则认为压力传感器故障,压力传感器检测到的实际刹车压力信号无效不进行压力闭环控制,执行步骤9;反之,则认为压力传感器正常,压力传感器检测到的实际刹车压力信号有效进行压力闭环控制,执行步骤8。
[0048]
所述压力传感器检测范围为机轮刹车系统的工作压力0~3000psi。
[0049]
步骤8、确定压力闭环控制输出的刹车电流:
[0050]
在确定压力闭环控制输出的刹车电流时,该刹车控制器通过左机轮压力传感器检测到该左机轮的实际刹车压力p
dl
,通过右机轮压力传感器检测到该右机轮的实际刹车压力p
dr
,硬件处理模块fpga通过pid控制模型
[0051]
计算左机轮的刹车压力指令p
cl
与左机轮的实际刹车压力p
dl
的差值;通过pid控制模型计算右机轮的刹车压力指令p
cr
与右机轮的实际刹车压力p
dl
的差值,实现压力闭环的超前控制。
[0052]
通过公式(12)和(13)计算压力闭环控制通过fpga按照200hz输出的刹车电流。
[0053]
i
l
=(p
cl

p
dl
)
×
pid
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(12)
[0054]
i
r
=(p
cr

p
dr
)
×
pid
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(13)
[0055]
式中,i
l
为左机轮的压力闭环控制输出的刹车电流,i
r
右机轮的压力闭环控制输出的刹车电流。
[0056]
步骤9、确定不进行压力闭环控制输出的刹车电流:
[0057]
如果步骤7中判断压力传感器故障,压力传感器检测到的实际刹车压力信号无效时,通过硬件处理模块fpga将软件处理模块cpu发送的左机轮的刹车压力指令p
cl
转换成左机轮的刹车电流i
l
,将右机轮的刹车压力指令p
cr
转换成右机轮的刹车电流i
r
。硬件处理模块fpga通过公式(14)和(15)将p
cl
和p
cr
转换为刹车电流。
[0058]
i
l
=k
s
×
p
cl
c
s
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(14)
[0059]
i
r
=k
s
×
p
cr
c
s
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(15)
[0060]
式中,i
l
为左机轮的不进行压力闭环控制输出的刹车电流,i
r
右机轮的不进行压力闭环控制输出的刹车电流,k
s
是刹车压力对应刹车电流的转换增益,c
s
是刹车压力对应刹车电流的转换常数。
[0061]
本发明提出的实现所述增加飞机机轮刹车系统动态响应方法的系统,包括刹车控制器、软件处理模块、硬件处理模块、速度传感器、伺服阀、机轮和压力传感器。所述软件处理模块为dsp软件处理模块;所述硬件处理模块为fpga硬件处理模块。所述硬件处理模块fpga的电信号输入端分别与指令传感器的输出端、速度传感器的输出端、压力传感器的输出端电气连接,接收指令传感器发出的脚蹬刹车压力信号、速度传感器提供的机轮速度频率信号和压力传感器提供的实际刹车压力信号,硬件处理模块fpga的电信号输入端通过spi与软件处理模块dsp的输出端联通,接收软件处理模块dsp提供的防滑刹车压力信号硬件处理模块fpga向伺服阀发送刹车电流信号,向软件处理模块dsp发送速度信号以及脚蹬刹车压力信号;伺服阀刹车口和机轮的进油口通过液压管路联通,为机轮提供压力;压力传感器安装在伺服阀和机轮之间的液压管路上,为刹车控制器提供实际刹车压力;速度传感器安装在机轮轮轴内,为刹车控制器提供机轮速度。
[0062]
本发明在刹车控制器中加入压力检测信号,在fpga中实现压力闭环控制,提高了机轮刹车系统对刹车压力的控制精度,并通过pid控制实现了刹车压力的超前控制;通过fpga采集压力信号,实现闭环控制控制频率高,达到200hz,提高了机轮刹车系统的响应特性;通过fpga采集速度信号转换传递到dsp,采集的速度精度高;在dsp 中采用速度闭环控制刹车压力,输出到fpga形成压力闭环,两个闭环独立控制,当其中速度闭环故障或者压力闭环故障都不会导致机轮刹车系统丧失刹车能力,并能够实现对机轮刹车系统的精确控制以及快速响应。
50km/h,所述接地保护的速度时间阈值t2为1秒,所述机轮刹车系统的回油压力值p
r
为110psi。
[0080]
步骤2、计算机轮锁死保护基准速度:
[0081]
所述机轮锁死保护保护功能是指当左机轮速度v
dl
与右机轮速度v
dr
的差值>30%时,为了防止飞机偏航,使速度低的机轮的输出机轮刹车系统的回油压力指令p
r
当计算机轮锁死保护基准速度为v
lwp
时,通过软件处理模块dsp对左机轮速度v
dl
的值与右机轮速度v
dr
的值进行比较,以该比较出来的大的值作为机轮锁死保护基准速度。通过公式(1)计算机轮锁死保护基准速度v
lwp
[0082]
v
lwp
=max(v
dl
,v
dr
)
ꢀꢀꢀꢀꢀꢀꢀ
(1)
[0083]
步骤3、判断是否激活机轮锁死保护功能:
[0084]
在判断是否激活机轮锁死保护功能时,刹车控制器接软件处理模块dsp通过机轮锁死保护基准速度v
lwp
、左机轮速度v
dl
和右机轮速度v
dr
判断是否激活机轮锁死保护功能。通过公式(2)和(3)判断是否激活机轮锁死保护。
[0085]
v
dl
≤k1×
v
lwp
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(2)
[0086]
v
dr
≤k1×
v
lwp
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(3)
[0087]
式中,v
lwp
为机轮锁死保护基准速度,v
dl
为左机轮速度,v
dr
为右机轮速度,k1为激活机轮锁死保护的下限阈值。如果v
dl
满足公式(2),则认为刹车控制器激活左机轮刹车控制通道的机轮锁死保护功能,软件处理模块dsp将输出机轮刹车系统的回油压力指令p
r
到硬件处理模块fpga;如果v
dl
不满足公式(2),则认为机刹车控制器未激活左机轮刹车控制通道的机轮锁死保护功能。
[0088]
如果v
dr
满足公式(3),则认为刹车控制器激活右机轮刹车控制通道的机轮锁死保护功能,软件处理模块dsp将输出机轮刹车系统的回油压力指令p
r
到硬件处理模块 fpga;如果v
dr
不满足公式(3),则认为机刹车控制器未激活右机轮刹车控制通道的机轮锁死保护功能轮锁死保护功能。
[0089]
如果v
dl
满足公式(2),进入步骤4判断刹车控制器左机轮的刹车控制通道是否退出机轮锁死保护;如果v
dl
不满足公式(2),则进行步骤5计算左机轮的刹车压力。
[0090]
如果v
dr
满足公式(3),进入步骤4判断刹车控制器右机轮的刹车控制通道是否退出机轮锁死保护;如果v
dr
不满足公式(3),则进入步骤5计算右机轮的刹车压力。
[0091]
本实施例中,所述激活机轮锁死保护的下限阈值k1为0.3,所述机轮刹车系统的回油压力指令p
r
为110psi。
[0092]
步骤4、判断是否退出机轮锁死保护功能:
[0093]
在判断是否退出机轮锁死保护功能时,刹车控制器接软件处理模块dsp通过机轮锁死保护基准速度、左机轮速度v
dl
和右机轮速度v
dr
判断是否退出机轮锁死保护功能。通过公式(4)和(5)判断是否退出机轮锁死保护功能。
[0094]
v
dl
≥k2×
v
lwp
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(4)
[0095]
v
dr
≥k2×
v
lwp
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(5)
[0096]
式中,k2为退出机轮锁死保护的上限阈值。
[0097]
如果v
dl
满足公式(4),则认为刹车控制器退出左机轮刹车控制通道的机轮锁死保护功能;如果v
dl
不满足公式(4),则认为机刹车控制器未退出左机轮刹车控制通道的机轮锁
死保护功能。
[0098]
如果v
dr
满足公式(5),则认为刹车控制器退出右机轮刹车控制通道的机轮锁死保护功能;如果v
dr
不满足公式(5),则认为机刹车控制器未退出右机轮刹车控制通道的机轮锁死保护功能轮锁死保护功能。
[0099]
本实施例中,所述退出机轮锁死保护的上限阈值k2为0.9。
[0100]
步骤5、计算速度闭环控制输出刹车压力:
[0101]
通过刹车控制器软件处理模块dsp将得到的左机轮基准速度v
rl
与左机轮速度v
dl
差值进行pd pbm运算,得到左机轮防滑控制压力p
sl
;将得到的右机轮基准速度v
rr
与右机轮速度v
dr
差值进行pd pbm运算,得到右机轮防滑控制压力p
sr
。通过公式(6)和(7)计算得到左机轮基准速度和右机轮基准速度。
[0102][0103][0104]
式中,v
rl
为左机轮基准速度,v
rr
为右机轮基准速度,为左机轮基准速度上一时刻的值,为右机轮基准速度上一时刻的值,a为飞机加速度,t为刹车控制器的控制周期。
[0105]
刹车控制器软件执行模块dsp通过公式(8)和(9)计算p
sl
和p
sr
实现速度闭环控制。所述pd pbm运算是一种多门限的pid设计方法,其中的积分级与常规的积分级不同,该积分级的值既可以增加,也可以减小,称之为压力偏调级,简称pbm。
[0106]
p
sl
=(v
rl

v
dl
)(pd pbm)
ꢀꢀꢀꢀꢀꢀꢀꢀ
(8)
[0107]
p
sr
=(v
rr

v
dr
)(pd pbm)
ꢀꢀꢀꢀꢀꢀꢀ
(9)
[0108]
式中,v
rl
为左机轮基准速度,v
rr
为右机轮基准速度。
[0109]
刹车控制器通过左指令传感器获取左脚蹬刹车压力p
l
,通过右指令传感器获取右脚蹬刹车压力p
r
。刹车控制器软件执行模块dsp通过公式(10)和(11)确定左机轮的刹车压力指令p
cl
和右机轮的刹车压力指令p
cr

[0110]
p
cl
=p
l

p
sl
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(10)
[0111]
p
cr
=p
r

p
sr
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(11)
[0112]
步骤6、判断是否输出左机轮的刹车压力指令p
cl
和右机轮的刹车压力指令p
cr

[0113]
当步骤1中的接地保护功能退出步骤4中的机轮锁死保护功能退出时,软件处理模块dsp输出左机轮的刹车压力指令p
cl
和右机轮的刹车压力指令p
cr
至硬件处理模块 fpga中。
[0114]
步骤7、判断是否进行压力闭环控制:
[0115]
在判断是否进行压力闭环控制时,通过刹车控制中的硬件处理模块fpga判断压力传感器是否故障。该压力传感器是否故障的判断条件是:检测到压力传感器开路、检测到压力传感器短路、检测到压力传感器的检测值不在工作压力范围内。
[0116]
当硬件处理模块fpga检测到的压力满足任一所述压力传感器是否故障的判断条件,则认为压力传感器故障,压力传感器检测到的实际刹车压力信号无效不进行压力闭环控制,执行步骤9;反之,则认为压力传感器正常,压力传感器检测到的实际刹车压力信号有
效进行压力闭环控制,执行步骤8。
[0117]
所述压力传感器检测范围为机轮刹车系统的工作压力0~3000psi。
[0118]
步骤8、确定压力闭环控制输出的刹车电流:
[0119]
在确定压力闭环控制输出的刹车电流时,该刹车控制器通过左机轮压力传感器检测到该左机轮的实际刹车压力p
dl
,通过右机轮压力传感器检测到该右机轮的实际刹车压力p
dr
,硬件处理模块fpga通过pid控制模型
[0120]
计算左机轮的刹车压力指令p
cl
与左机轮的实际刹车压力p
dl
的差值;通过pid控制模型计算右机轮的刹车压力指令p
cr
与右机轮的实际刹车压力p
dl
的差值,实现压力闭环的超前控制。
[0121]
通过公式(12)和(13)计算压力闭环控制通过fpga按照200hz输出的刹车电流。
[0122]
i
l
=(p
cl

p
dl
)
×
pid
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(12)
[0123]
i
r
=(p
cr

p
dr
)
×
pid
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(13)
[0124]
式中,i
l
为左机轮的压力闭环控制输出的刹车电流,i
r
右机轮的压力闭环控制输出的刹车电流。
[0125]
步骤9、确定不进行压力闭环控制输出的刹车电流:
[0126]
如果步骤7中判断压力传感器故障,压力传感器检测到的实际刹车压力信号无效时,通过硬件处理模块fpga将软件处理模块cpu发送的左机轮的刹车压力指令p
cl
转换成左机轮的刹车电流i
l
,将右机轮的刹车压力指令p
cr
转换成右机轮的刹车电流i
r
。硬件处理模块fpga通过公式(14)和(15)将p
cl
和p
cr
转换为刹车电流。
[0127]
i
l
=k
s
×
p
cl
c
s
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(14)
[0128]
i
r
=k
s
×
p
cr
c
s
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(15)
[0129]
式中,i
l
为左机轮的不进行压力闭环控制输出的刹车电流,i
r
右机轮的不进行压力闭环控制输出的刹车电流,k
s
是刹车压力对应刹车电流的转换增益,c
s
是刹车压力对应刹车电流的转换常数。本实施例中,所述刹车压力对应刹车电流的转换增益k
s
为 0.012,所述刹车压力对应刹车电流的转换常数c
s
为2.68 。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献