一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

多晶18H六方铁氧体、其制造方法及用途与流程

2022-09-15 07:35:51 来源:中国专利 TAG:

多晶18h六方铁氧体、其制造方法及用途
1.相关申请的交叉引用
2.本技术要求于2020年2月10日提交的美国申请第62/972116号的权益,其通过引用整体并入本文。


背景技术:

3.本公开一般地涉及多晶18h六方铁氧体组合物,特别是具有高频磁导率的多晶18h六方铁氧体组合物、包含所述多晶18h六方铁氧体组合物的复合材料、其制造方法及用途。
4.需要改善的性能和小型化以满足在超高频(ultrahigh frequency,uhf)、l波段和s波段应用中使用的装置不断增长的需求,其在多种商业和国防相关行业中特别受关注。作为雷达和现代无线通信系统中的重要组件,正在不断开发具有紧凑尺寸的天线元件。然而,开发用于这样的高频应用中的铁氧体材料具有挑战性,因为大多数铁氧体材料在高频下表现出相对高的磁损耗。制造铁氧体材料的方法可以影响材料的晶体结构,从而改善性能。
5.因此,仍然需要在千兆赫(gigahertz)范围内具有低磁损耗、高磁导率以及低的介电常数和介电损耗的铁氧体材料和制造所述铁氧体材料的方法。


技术实现要素:

6.多晶铁氧体组合物具有式m5me2ti3fe
12o31
,其中m为ba
2
、sr
2
、或其组合;以及me为mg
2
、zn
2
、cu
2
、co
2
、或其组合;以及所述多晶铁氧体组合物的平均晶粒尺寸为1微米至100微米。
7.制造所述多晶铁氧体组合物的方法包括对用于多晶铁氧体组合物的共混金属源化合物进行煅烧;减小经煅烧的源化合物的颗粒尺寸以获得平均颗粒尺寸为0.5微米至10微米的颗粒;将颗粒和粘结剂的混合物造粒以获得颗粒体;将颗粒体压制成生坯;以及对生坯进行烧结以形成多晶铁氧体组合物。
8.复合材料包含:聚合物基体;和所述多晶铁氧体组合物。
9.制造所述复合材料的方法包括:将聚合物、多晶铁氧体组合物、任选的溶剂和任选的添加剂组分合并以形成复合材料;以及任选地从复合材料中除去溶剂。
10.还描述了包含所述多晶铁氧体组合物或复合材料的制品,所述制品包括天线、感应器、变压器、或抗电磁干扰材料。
附图说明
11.以下附图是示例性实施方案,提供这些附图是为了举例说明本公开。附图是说明实施例的,其不旨在将根据本公开制造的装置限于本文中阐述的材料、条件或工艺参数。
12.图1示出了示出3个半y块体层、3个六方钛酸钡(hexagonal barium titanate,hbt)层和3个半y块体层的18h六方铁氧体ba5ti3me2fe
12o31
晶胞的18层堆叠顺序的一半的示意图。间隙阳离子的实际分布可能不同,以提供沿c轴的磁耦合路径。hbt层还可以包含fe离子或/和me=mg、zn、co、cu。
13.图2示出了示出表1中所公开的示例性多晶铁氧体ba5mg
2-x
zn
x
ti3fe
12o31
(其中x从0至2变化)的磁滞回线数据的图。
14.图3示出了在o2中在1150℃下烧结4小时的示例性多晶铁氧体ba5mg
2-x
zn
x
ti3fe
12o31
(x=0(#1-1)、0.25(#2-1)、0.5(#3-1)和0.7(#4-1))样品的磁导率谱。
15.图4示出了在o2中在1250℃下烧结4小时的示例性多晶铁氧体ba5mg
2-x
zn
x
ti3fe
12o31
(x=0(#1-2)、0.25(#2-2)、0.5(#3-2)和0.7(#4-2))样品的磁导率谱。
16.图5示出了在o2中在1200℃下烧结4小时的示例性多晶铁氧体ba5mg
2-x
zn
x
ti3fe
12o31
(x=0(#1-3))样品的磁导率谱。
具体实施方式
17.发现平均晶粒尺寸为1微米至100微米的多晶18h型铁氧体组合物在高频下具有低的磁损耗角正切和高的磁导率,同时还表现出低的介电损耗角正切和高的介电常数。有利地,多晶18h型铁氧体组合物的制备具有成本效益,因为其不需要昂贵的元素,例如稀土或贵金属元素。当与聚合物复合时,铁氧体组合物提供了具有低磁损耗、高磁导率、低介电常数和低介电损耗的复合材料。本文中所述的铁氧体组合物和复合材料特别地可用于在宽频率范围(0.5ghz至10ghz)中的诸如天线基板、感应器芯和emi抑制器的应用。
18.多晶铁氧体组合物具有式m5me2ti3fe
12o31
,其中m为ba
2
、sr
2
、或其组合;以及me为mg
2
、zn
2
、cu
2
、co
2
、或其组合。多晶铁氧体组合物可以具有18h型结构。多晶铁氧体组合物可以具有面内(c基面(basal c-plane))易磁化(也称为平面各向异性)。
19.选择多晶铁氧体组合物的晶粒尺寸以提供具有适用于给定应用的磁介电特性的多晶铁氧体组合物。晶粒尺寸可以通过控制铁氧体合成条件例如温度、加热时间和加热速率或冷却速率来控制。铁氧体组合物的平均晶粒尺寸可以为1微米至100微米,优选为5微米至50微米。平均晶粒尺寸可以例如通过x射线衍射法(xrd)、扫捕电子显微术(sem)、透射电子显微术(tem)、或其组合来确定。
20.多晶铁氧体组合物可以具有下式:
21.(ba
1-x
sr
x
)5mg
2-y
me
′yti3fe
12-zo31

22.其中me

为zn
2
、cu
2
、co
2
、或其组合,x=0至1.5,y=0至1.8,以及z=-4至 4。该式的铁氧体组合物有利地显示出超低损耗并结合有独特的共振峰。在某些组合物中,y=0至1.0以及/或者x=0。
23.在某些方面中,多晶铁氧体组合物可以不包括式ba5zn2ti3fe
12o31
、ba5mg2ti3fe
12o31
、ba5co2ti3fe
12o31
、ba5cu2ti3fe
12o31
、ba
5.1
(ni
1.1
cu
0.4
)ti
2.7
fe
12.3
mn
0.4o31
、或ba
5.4
(mg
1.3
zn
0.7
)ti
2.9
fe
11.7o31
的铁氧体。
24.多晶铁氧体组合物可以具有在1ghz至4ghz的频率下至少2、优选在1ghz至4ghz的频率下至少5的磁导率(μ);在1ghz至4ghz的频率下小于0.05、优选在1ghz至4ghz的频率下小于0.02的磁损耗角正切(tanδ
μ
),更优选同时在该频率下保持至少2的高磁导率;在1ghz至4ghz的频率下至少13至16、优选在1ghz至4ghz的频率下至少13至15的介电常数(ε);在1ghz至3ghz的频率下小于0.004、优选在1ghz至6ghz的频率下小于0.003的介电损耗角正切(tanδ
ε
);在1ghz至4ghz的频率下或者在2ghz至6ghz的频率下小于0.02的磁损耗因子(tanδ
μ


);大于4ghz、优选大于6ghz的截止频率(共振频率,fr);大于9ghz、优选大于12ghz的
snoek乘积,其中snoek乘积=u
′×fr
;或者前述的组合。
25.多晶六方铁氧体颗粒可以通过任何合适的方法来制造。制造多晶铁氧体组合物的方法的实例包括一步烧结陶瓷法和湿化学法。制造多晶铁氧体组合物的方法的另一个实例可以包括:对用于期望的多晶铁氧体组合物的共混金属源化合物进行煅烧;减小经煅烧的源化合物的颗粒尺寸以获得平均颗粒尺寸为0.5微米至10微米的颗粒;将颗粒和粘结剂的混合物造粒以获得颗粒体;将颗粒体压制成生坯;以及对生坯进行烧结以形成多晶铁氧体组合物。
26.金属源化合物是合成铁氧体所需的化合物。可以基于诸如成本和可用性的因素来选择金属源化合物。给定金属的示例性源化合物包括金属的氧化物、碳酸盐、乙酸盐、硝酸盐、硫酸盐、或氯化物。示例性前体包括碳酸钡(例如,baco3)、铁氧化物(例如,α-fe2o3)、镁氧化物(例如,mgo)、钛氧化物(例如tio2)和锌氧化物(例如,zno)。另外的铁前体包括fe(no3)3·
9h2o、fecl3·
6h2o、fe2(so4)3·
h2o;可能的钴前体包括钴氧化物(co3o4)、co(ch3coo)2·
4h2o、co(no3)2·
6h2o、cocl2·
6h2o;以及另外的锌前体包括zn(no3)2·
6h2o、zncl2、znso4.7h2o。金属源化合物可以以实现期望的金属化学计量的量合并。
27.对共混金属源化合物进行煅烧可以在合适的温度下进行一定的时长以合成期望的铁氧体并实现期望的晶粒尺寸。例如,温度可以为800℃至1300℃、或900℃至1200℃、或1000℃至1200℃。时长可以为例如0.5小时至200小时、或1小时至15小时。煅烧在空气、氮气、氧气、或其组合的气氛中进行。还可以选择用于在炉中煅烧的加热速率或冷却速率以获得期望的铁氧体、晶粒尺寸或结构形态。例如,加热速率或冷却速率可以为2℃/分钟至3℃/分钟。
28.减小经煅烧的共混物的颗粒尺寸可以通过任何合适的方法来进行。减小颗粒尺寸的方法的实例包括破碎、研磨、碾磨、机械碾磨、及其组合。减小颗粒尺寸的装置的实例包括介质磨机、球磨机、双辊磨机、三辊磨机、珠磨机、喷气磨机、和低温研磨机。在将颗粒尺寸减小之后,可以使颗粒经受按大小分级(sizing)步骤例如筛分,以改变颗粒尺寸分布。
29.将铁氧体颗粒和粘结剂的混合物造粒可以通过任何合适的方法来进行,例如通过喷雾干燥造粒法或振荡挤出造粒法。例如,可以将铁氧体颗粒、粘结剂和根据需要的各种各样的添加剂的浆料分散在溶剂例如水中,然后可以将该浆料用喷雾干燥机等喷雾干燥以生产颗粒体。可替选地,可以将铁氧体颗粒、粘结剂和根据需要的各种各样的添加剂混合并用搅拌造粒机造粒以生产粒状粉末。然后可以将该粒状粉末挤出并用振荡造粒机造粒以生产颗粒体。
30.粘结剂被选择成可通过加热从生坯中除去并且任选地用于溶解在溶剂中。粘结剂的实例包括聚乙烯吡咯烷酮(pvp)、聚乙烯醇(pva)、聚乙烯醇缩丁醛(pvb)、聚丙烯酰胺(pam)、聚(丙烯酸)(paa)、聚乙二醇(peg)、聚环氧乙烷(peo)、乙酸纤维素、淀粉、聚碳酸亚丙酯、聚乙酸乙烯酯(pvac)、及其组合。优选地,粘结剂为pva、pvb、或其组合。
31.通过各种各样的压制成型法例如单压法(single pressing method)、双压法(double pressing method)、浮模法(floating die method)、抽出法(withdrawal method)等将粒状铁氧体组合物成型成预定形状,以获得生坯。根据生坯的选定尺寸、形状和数量适当地选择压制机,例如机械压力机、液压机、或伺服压力机。用于形成生坯的成型压力可以为0.3公吨/平方厘米(mt/cm2)至3mt/cm2、或0.5mt/cm2至2mt/cm2。
32.然后可以将生坯在合适的气氛中烧结以形成多晶铁氧体组合物。烧结可以在800℃至1,300℃、900℃至1,250℃、或1,000℃至1,200℃的烧结温度下发生。烧结可以发生1小时至20小时、或2.55小时至12小时的烧结时间。气氛可以为空气、氮气、氧气、或其组合。烧结可以以1℃/分钟至5℃/分钟的加热速率和/或以1℃/分钟至5℃/分钟的冷却速率进行。
33.复合材料可以包含多晶铁氧体组合物和聚合物基体。
34.基于复合材料的总体积,复合材料可以包含5体积百分比(体积%)至95体积%、10体积%至90体积%、20体积%至80体积%、或30体积%至70体积%的多晶铁氧体组合物。基于复合材料的总体积,复合材料可以包含5体积%至95体积%、10体积%至90体积%、20体积%至80体积%、或30体积%至70体积%的聚合物。
35.复合材料中存在的18h铁氧体颗粒的颗粒尺寸为0.5微米至30微米,优选为1微米至10微米。颗粒尺寸可以使用horiba la-910激光光散射psd分析仪或类似仪器、或者如根据astm d4464-15所确定的来确定。所报告的颗粒尺寸为按体积计的中值d50颗粒尺寸。合适尺寸的18h型铁氧体颗粒可以通过任何合适的方法来获得。例如,可以使用任何合适的陶瓷法或化学法来合成期望尺寸的18h铁氧体颗粒。可替选地,18h型铁氧体颗粒可以通过对通过上述方法获得的经烧结的铁氧体块体进行破碎和研磨来获得。
36.聚合物基体可以包括热固性聚合物或热塑性聚合物。如本文所用,术语“热塑性的”是指这样的材料:其是塑性的或可变形的,当加热时熔化成液体,并且当充分冷却时冷冻结成脆性的玻璃态。可以使用的热塑性聚合物的实例包括环烯烃聚合物(包括聚降冰片烯和包含降冰片烯基单元的共聚物,例如,诸如降冰片烯的环状聚合物与诸如乙烯或丙烯的无环烯烃的共聚物)、含氟聚合物(例如,聚氟乙烯(pvf)、聚偏二氟乙烯(pvdf)、氟化乙烯-丙烯(fep)、聚四氟乙烯(ptfe)、聚(乙烯-四氟乙烯)(petfe)或全氟烷氧基(pfa))、聚缩醛(例如,聚氧乙烯和聚甲醛)、聚(c
1-6
烷基)丙烯酸酯、聚丙烯酰胺(包括未经取代的和单-n-或二-n-(c
1-8
烷基)丙烯酰胺)、聚丙烯腈、聚酰胺(例如,脂族聚酰胺、聚邻苯二甲酰胺或聚芳酰胺)、聚酰胺酰亚胺、聚酸酐、聚亚芳基醚(例如,聚苯醚)、聚亚芳基醚酮(例如,聚醚醚酮(peek)和聚醚酮酮(pekk))、聚亚芳基酮、聚亚芳基硫醚(例如,聚苯硫醚(pps))、聚亚芳基砜(例如,聚醚砜(pes)、聚苯砜(pps)等)、聚苯并噻唑、聚苯并唑、聚苯并咪唑、聚碳酸酯(包括均聚碳酸酯或聚碳酸酯共聚物,例如聚碳酸酯-硅氧烷、聚碳酸酯-酯或聚碳酸酯-酯-硅氧烷)、聚酯(例如,聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚芳酯或聚酯共聚物例如聚酯-醚)、聚醚酰亚胺(例如,诸如聚醚酰亚胺-硅氧烷共聚物的共聚物)、聚酰亚胺(例如,诸如聚酰亚胺-硅氧烷共聚物的共聚物)、聚(c
1-6
烷基)甲基丙烯酸酯、聚烷基丙烯酰胺(例如,未经取代的和单-n-或二-n-(c
1-8
烷基)丙烯酰胺)、聚烯烃(例如,聚乙烯,如高密度聚乙烯(hdpe)、低密度聚乙烯(ldpe)和线性低密度聚乙烯(lldpe)、聚丙烯、及其卤化衍生物(例如聚四氟乙烯)、及其共聚物(例如乙烯-α-烯烃共聚物))、聚二唑、聚甲醛、聚苯酞(polyphthalide)、聚硅氮烷、聚硅氧烷(有机硅)、聚苯乙烯(例如,诸如丙烯腈-丁二烯-苯乙烯(abs)或甲基丙烯酸甲酯-丁二烯-苯乙烯(mbs)的共聚物)、聚硫化物、聚磺酰胺、聚磺酸酯、聚砜、聚硫酯、聚三嗪、聚脲、聚氨酯、乙烯基聚合物(例如,聚乙烯醇、聚乙烯酯、聚乙烯醚、聚卤代乙烯(例如,聚氯乙烯)、聚乙烯酮、聚乙烯腈、或聚乙烯硫醚)、石蜡等。可以使用包含前述热塑性聚合物中的至少一者的组合。
37.热固性聚合物衍生自经聚合或固化而可以不可逆地硬化并变得不可溶的热固性
单体或预聚物(树脂),所述聚合或固化可以通过热或暴露于辐射(例如,紫外光、可见光、红外光、或电子束(e-beam)辐射)来引发。热固性聚合物包括醇酸树脂、双马来酰亚胺聚合物、双马来酰亚胺三嗪聚合物、氰酸酯聚合物、苯并环丁烯聚合物、苯并嗪聚合物、邻苯二甲酸二烯丙酯聚合物、环氧树脂、羟甲基呋喃聚合物、三聚氰胺-甲醛聚合物、酚醛树脂(包括酚-甲醛聚合物,例如酚醛清漆和甲阶酚醛树脂)、苯并嗪、聚二烯例如聚丁二烯(包括其均聚物和共聚物,例如聚(丁二烯-异戊二烯))、聚异氰酸酯、聚脲、聚氨酯、氰脲酸三烯丙酯聚合物、异氰脲酸三烯丙酯聚合物、某些有机硅、以及可聚合预聚物(例如,具有烯属不饱和性的预聚物,如不饱和聚酯、聚酰亚胺)等。预聚物可以是例如用诸如以下的反应性单体聚合的、共聚的或交联的:苯乙烯、α-甲基苯乙烯、乙烯基甲苯、氯苯乙烯、丙烯酸、(甲基)丙烯酸、丙烯酸(c
1-6
烷基)酯、甲基丙烯酸(c
1-6
烷基)酯、丙烯腈、乙酸乙烯酯、乙酸烯丙酯、氰脲酸三烯丙酯、异氰脲酸三烯丙酯、或丙烯酰胺。
38.聚合物可以包括以下中的至少一者:含氟聚合物(例如,聚偏二氟乙烯(pvdf)或聚四氟乙烯(ptfe))、聚烯烃(例如,聚乙烯(pe)、高密度聚乙烯(hdpe)、低密度聚乙烯(ldpe))、聚(亚芳基醚酮)(例如,聚醚醚酮(peek))、聚(甲基)丙烯酸烷基酯(例如,聚甲基丙烯酸甲酯(pmma))、或聚(醚砜)。
39.复合材料可以包含另外的添加剂,例如介电填料或阻燃剂,只要添加剂小于复合材料的总体积的5体积%即可。
40.可以使用颗粒介电填料来调节复合材料的介电常数、耗散因数、热膨胀系数和其他特性。示例性介电填料包括二氧化钛(金红石和锐钛矿)、钛酸钡、钛酸锶、二氧化硅(包括熔融无定形二氧化硅)、刚玉、硅灰石、ba2ti9o
20
、实心玻璃球、合成玻璃或陶瓷中空球、石英、氮化硼、氮化铝、碳化硅、氧化铍、氧化铝、三水合氧化铝、氧化镁、云母、滑石、纳米粘土、氢氧化镁、以及包括前述中的至少一者的组合。
41.阻燃剂可以为卤化的或非卤化的。示例性无机阻燃剂为金属水合物,例如以下金属的水合物:例如mg、ca、al、fe、zn、ba、cu、ni,或者包含前述中的至少一者的组合。具体的水合物包括氢氧化铝、氢氧化镁、氢氧化钙、氢氧化铁、氢氧化锌、氢氧化铜和氢氧化镍;以及铝酸钙、二水合石膏、硼酸锌和偏硼酸钡的水合物。可替代地或除了无机阻燃剂之外,可以使用有机阻燃剂。无机阻燃剂的实例包括例如:三聚氰胺氰尿酸盐/酯,细颗粒尺寸的三聚氰胺多聚磷酸盐/酯,各种各样的其他含磷化合物例如芳族次膦酸盐/酯、二次膦酸盐/酯、膦酸盐/酯和磷酸盐/酯,某些聚倍半硅氧烷,硅氧烷,以及卤代化合物例如六氯内亚甲基四氢邻苯二甲酸(het酸),四溴邻苯二甲酸和二溴新戊二醇。
42.复合材料可以具有1ghz至10ghz的工作频率。
43.复合材料可以具有在1ghz至8ghz的频率下小于0.02的磁损耗角正切(tanδ
μ
)。具有这样的低磁损耗的磁性材料可以有利地用于高频应用例如天线应用中。
44.复合材料可以具有在1ghz至10ghz的频率下至少1.5的磁导率(μ)。
45.复合材料可以具有在1ghz至10ghz的频率下5至6的介电常数(ε)。
46.复合材料可以具有在1ghz至10ghz的频率下小于0.004的介电损耗角正切(tanδ
ε
)。
47.复合材料可以具有在1ghz至8ghz的频率下或在2ghz至10ghz的频率下小于0.01、或0.008的磁损耗因子(tanδ
μ


)。
48.复合材料可以具有大于8ghz、优选地大于10ghz的截止频率(共振频率,fr)。
49.制造复合材料的方法包括将聚合物、多晶铁氧体组合物、任选的溶剂和任何添加剂合并以形成组合物。可以将聚合物在与多晶铁氧体组合物合并之前或之后熔融。任选地,所述方法还包括除去溶剂。合并可以通过任何合适的方法例如共混、混合或搅拌来进行。在一个实施方案中,聚合物是熔融的,并且多晶铁氧体组合物和任选的添加剂溶解或悬浮在熔融聚合物中。在一个实施方案中,用于形成包含聚合物和多晶铁氧体组合物以及任选的添加剂的复合材料的组分可以通过溶解或悬浮在溶剂中来合并以提供混合物或溶液。
50.溶剂(当包含时)被选择成使聚合物溶解、使多晶铁氧体组合物和可能存在的任何其他任选添加剂分散,并且具有适宜的蒸发速率以成形和干燥。可能的溶剂的非排他性清单为二甲苯;甲苯;甲基乙基酮;甲基异丁基酮;己烷,以及更高级液态线性烷烃,例如庚烷、辛烷、壬烷等;环己烷;异佛尔酮;各种基于萜烯的溶剂;以及共混溶剂。具体的示例性溶剂包括二甲苯、甲苯、甲基乙基酮、甲基异丁基酮、和己烷,并且又更具体地为二甲苯和甲苯。
51.溶液或分散体中的组合物的组分的浓度不是关键的,并且将取决于组分的溶解度、使用的添加剂水平、应用方法和其他因素。通常,基于溶液的总重量,溶液包含10重量百分比至80重量百分比的固体(除溶剂之外的所有组分),更具体地50重量百分比至75重量百分比的固体。
52.允许任何溶剂在环境条件下蒸发,或者通过强制通风或加热的空气蒸发,并且使组合物冷却以提供复合材料。组合物还可以通过已知的方法例如挤出、成型或浇铸来成形。
53.可以例如通过压制成型、注射成型、反应注射成型等对混合物进行成型以形成复合材料。可以可替代地将混合物挤出或使其经受轧制技术以形成复合材料。
54.复合材料可以通过对热固性组合物进行反应注射成型来制备。反应注射成型可以包括将至少两个流混合以形成热固性组合物,以及将热固性组合物注射到模具中,其中第一流可以包含催化剂,以及第二流可以包含活化剂。第三流或第一流和第二流中的一者或两者可以包含单体。第三流或第一流和第二流中的一者或两者可以包含交联剂、多晶铁氧体组合物和添加剂中的至少一者。多晶铁氧体组合物和添加剂中的一者或两者可以在注射热固性组合物之前被添加至模具中。
55.混合可以在注射成型机的顶部空间中发生。混合可以于在线混合器中发生。混合可以在注射到模具期间发生。混合可以在大于或等于0℃至200℃、或15℃至130℃、或0℃至45℃、或23℃至45℃的温度下发生。
56.模具可以保持在大于或等于0℃至250℃、或23℃至200℃、或45℃至250℃、或30℃至130℃、或50℃至70℃的温度下。填充模具可以花费0.25分钟至0.5分钟,在此期间,模具温度可能降低。在填充模具之后,热固性组合物的温度可以例如从0℃至45℃的第一温度升高至45℃至250℃的第二温度。成型可以在65千帕(kpa)至350千帕(kpa)的压力下发生。成型可以发生少于或等于5分钟、或者少于或等于2分钟、或者2秒至30秒。在聚合完成之后,可以在模具温度或降低的模具温度下移除复合材料。例如,脱模温度tr可以小于或等于比成型温度tm小10℃(tr≤t
m-10℃)。
57.在将复合材料从模具中移除之后,可以使其后固化。后固化可以在100℃至150℃、或140℃至200℃的温度下发生大于或等于5分钟。
58.本文还包括包含多晶铁氧体组合物或复合材料的制品。制品可以为微波装置,例
如天线或感应器。制品可以为变压器、感应器或抗电磁干扰材料。制品可以为天线,例如贴片天线、倒f天线或平面倒f天线。制品可以为磁性汇流条,例如用于无线充电的磁性汇流条;nfc屏蔽材料;或电子带隙超材料。制品可以用于0.1ghz至4ghz范围或0.5ghz至2ghz范围内的频率。制品可以用于可在超高频范围内工作的各种各样的装置,例如高频或微波天线、滤波器、感应器、环行器或移相器。制品可以是可在大于或等于1ghz的频率下或者在1ghz至6ghz的频率下工作的。这样的制品可以用于商业应用和军事应用、天气雷达、科学通信、无线通信、自控车辆、飞机通信、空间通信、卫星通信、或监测中。
59.提供以下实施例以举例说明本公开。实施例仅为说明性的,并不旨在限制其范围。
60.实施例
61.制造了一系列18h六方铁氧体组合物。六方铁氧体的化学式示于下表1中。
62.表1.多晶六方铁氧体ba5mg
2-x
zn
x
ti3fe
12o31
的式
63.样品编号x式10ba5mg2ti3fe
11.7o31
20.25ba5mg
1.75
zn
0.25
ti3fe
11.7o31
30.50ba5mg
1.5
zn
0.5
ti3fe
11.7o31
40.70ba5mg
1.3
zn
0.7
ti3fe
11.7o31
51.00ba5mg1zn1ti3fe
11.7o31
61.25ba5mg
0.75
zn
1.25
ti3fe
11.7o31
71.50ba5mg
0.5
zn
1.5
ti3fe
11.7o31
82.00ba5zn2ti3fe
11.7o31
64.这八种六方铁氧体组合物中的每一者通常根据以下过程制造。
65.所使用的金属源化合物为:baco3(>99.5%)、mgo(>99.5%)、zno(>99.5%)、tio2(>99.5%)和fe2o3(>99.2%)。
66.将金属源化合物在湿式行星式磨机中以提供所需公式的比率共混在一起。
67.金属源化合物的混合物通过在空气中加热最高至1100℃持续4小时的保温时间来进行煅烧。
68.然后将经煅烧的铁氧体材料破碎并通过40#筛进行筛分。然后使经筛分的铁氧体颗粒在湿式行星式磨机中经受研磨以实现0.5微米至10微米的尺寸。
69.将细铁氧体颗粒与0.5重量百分比(重量%)至5重量%的聚乙烯醇(pva)混合,然后通过40#筛进行筛分来将其造粒成颗粒体。
70.在1mt/cm2的压力下压制颗粒体以形成铁氧体生坯。形成两种不同形状的生坯:用于磁导率和介电常数测量的环状物(od=7mm,id=3mm,厚度=3mm至3.5mm)或者用于磁滞测量的盘状物(直径6mm)。
71.首先通过在空气中在600℃加热2小时从生坯中除去pva,然后在氧气气氛中在1150℃或1250℃下将生坯烧结4小时以获得多晶铁氧体组合物。氧气流量为0.5l/分钟,升温速率为3℃/分钟,以及冷却速率为3℃/分钟。与在较高温度下烧结相比,在较低温度下烧结在最终铁氧体组合物中产生更小的晶粒尺寸。
72.在室温下,使用振动样品磁强计(vibrating sample magnetometer,vsm)在施加的磁场为20koe的情况下进行磁滞测量。
73.图2示出了对于表1的8种铁氧体组合物中的每一者确定的磁滞回线。下表2列出了表1铁氧体组合物中的每一者的饱和磁化强度和矫顽力。观察到zn掺杂剂可以使饱和磁化强度(约1300g至1350g)最大化,尤其是在x=1.0至1.2时,同时导致14oe的最小矫顽力。这意味着zn离子确实能够调整18h铁氧体的固有特性例如磁化强度、各向异性场等。
74.表2.多晶铁氧体ba5mg
2-x
zn
x
ti3fe
12o31
的饱和磁化强度和矫顽力
75.样品编号x4πms(g)hc(oe)10112267.720.25120649.630.50126242.640.70129637.251.00134534.361.25131814.671.50124538.682.00954128
76.以nicholson-ross-weir(nrw)法通过矢量网络分析仪(vector network analyzer,vna)在0.1ghz至10ghz的频率下在同轴空气线中测量铁氧体样品的磁导率/介电常数。参见baker-jarvis,j.等人“measuring the permittivity and permeability of lossy materials:solids,liquids,metals,building materials,and negative-index materials”,国家标准技术研究所技术说明1536(national institute of standards and technology technical note 1536),172页(2005年2月),美国政府印刷局(u.s.government printing office)。
77.图3示出了在1150℃下烧结的ba5mg
2-x
zn
x
ti3fe
12o31
(x=0(#1-1)、0.25(#2-1)、0.5(#3-1)和0.7(#4-1))样品的磁导率谱,而图4示出了在1250℃下烧结的ba5mg
2-x
zn
x
ti3fe
12o31
(x=0(#1-2)、0.25(#2-2)、0.5(#3-2)和0.7(#4-2))样品的磁导率谱。下表3和表4列出了对于这些铁氧体样品中的每一者所确定的在1ghz至3ghz下的磁导率、截止频率和snoek乘积。图5和表5示出了在1200℃下烧结的样品ba5mg
2-x
zn
x
ti3fe
12o31
(x=0(#1-3))的磁导率谱和数据总结。表明样品在1ghz至4ghz的宽频率范围内的磁损耗角正切非常低(0.05至0.07),而磁导率保持高于2或4。相应地,比损耗(也称为损耗因子)在0.02至0.03的范围内。可以容易地通过改变mg离子与zn离子的比率来调整磁损耗、磁导率或截止频率以满足各种各样应用的需要。
78.表3.在o2中在1150℃下烧结4小时的铁氧体样品ba5mg
2-x
zn
x
ti3fe
12o31
(x=0、0.25、0.5和0.7)在1ghz至3ghz下的磁导率、截止频率和snoek乘积。snoek乘积=μ
′×fr

79.80.表4.在o2中在1250℃下烧结4小时的铁氧体样品ba5mg
2-x
zn
x
ti3fe
12o31
(x=0、0.25、0.5和0.7)在1ghz至3ghz下的磁导率、截止频率和snoek乘积。snoek乘积=μ
′×fr

[0081][0082]
表5.在o2中在1200℃下烧结4小时的铁氧体样品ba5mg
2-x
zn
x
ti3fe
12o31
(x=0)在2ghz至4ghz下的磁导率、截止频率和snoek乘积。snoek乘积=μ
′×
fr。
[0083][0084]
以下阐述的是本公开的非限制性方面。
[0085]
方面1:一种多晶铁氧体组合物,具有式m5me2ti3fe
12o31
,其中m为ba
2
、sr
2
、或其组合;以及me为mg
2
、zn
2
、cu
2
、co
2
、或其组合;以及所述多晶铁氧体组合物的平均晶粒尺寸为1微米至100微米,优选为5微米至50微米。
[0086]
方面2:根据方面1所述的多晶铁氧体组合物,具有式(ba
1-x
sr
x
)5mg
2-y
me
′yti3fe
12-zo31
,其中me

为zn
2
、cu
2
、co
2
、或其组合,x=0至1.5,y=0至1.8,以及z=-4至 4。
[0087]
方面3:根据方面2所述的多晶铁氧体组合物,其中y=0至1.0。
[0088]
方面4:根据方面2或3所述的多晶铁氧体组合物,其中x=0。
[0089]
方面5:根据前述方面中任一项所述的多晶铁氧体组合物,具有在1ghz至4ghz的频率下至少2、优选在1ghz至4ghz的频率下至少5的磁导率(μ);在1ghz至4ghz的频率下小于0.05、优选在1ghz至4ghz的频率下小于0.02的磁损耗角正切(tanδ
μ
),更优选同时在该频率下保持至少2的高磁导率;在1ghz至4ghz的频率下至少13至16、优选在1ghz至4ghz的频率下至少13至15的介电常数(ε);在1ghz至4ghz的频率下小于0.004、优选在1ghz至6ghz的频率下小于0.003的介电损耗角正切(tanδ
ε
);在1ghz至4ghz的频率下或在2ghz至6ghz的频率下小于0.02的磁损耗因子(tanδ
μ


);大于4ghz、优选大于6ghz的截止频率(共振频率,fr);大于9ghz、优选大于12ghz的snoek乘积,其中snoek乘积=u
′×fr
;或者前述的组合。
[0090]
方面6:根据前述方面中任一项所述的多晶铁氧体组合物,其具有面内(c基面)易磁化。
[0091]
方面7:根据前述方面中任一项所述的多晶铁氧体组合物,其具有18h结构。
[0092]
方面8:一种制造多晶铁氧体组合物的方法,包括对用于根据方面1至7中任一项所述的多晶铁氧体组合物的共混金属源化合物进行煅烧;减小经煅烧的源化合物的颗粒尺寸以获得平均颗粒尺寸为0.5微米至10微米的颗粒;将所述颗粒和粘结剂的混合物造粒以获得颗粒体;将颗粒体压制成生坯;以及对所述生坯进行烧结以形成所述多晶铁氧体组合物。
[0093]
方面9:根据方面8所述的方法,其中煅烧在900℃至1200℃下进行0.5小时至20小时。
[0094]
方面10:根据方面9所述的方法,其中煅烧在空气、氮气、氧气、或其组合的气氛中进行。
[0095]
方面11:根据方面8至10中任一项所述的方法,其中烧结在1000℃至1300℃下进行1小时至20小时。
[0096]
方面12:根据方面8至11中任一项所述的方法,其中烧结在空气、氮气、氧气、或其组合的气氛中进行。
[0097]
方面13:根据方面8至12中任一项所述的方法,其中烧结以1℃/分钟至5℃/分钟的升温速率和/或以1℃/分钟至5℃/分钟的冷却速率进行。
[0098]
方面14:根据方面8至13中任一项所述的方法,其中减小颗粒尺寸包括对所述经煅烧的源化合物进行破碎和/或研磨。
[0099]
方面15:根据方面8至14中任一项所述的方法,还包括对所述颗粒按大小分级。
[0100]
方面16:根据方面8至15中任一项所述的方法,还包括将所述金属源化合物共混。
[0101]
方面17:根据方面8至16中任一项所述的方法,其中所述粘结剂为聚乙烯吡咯烷酮(pvp)、聚(乙烯醇)(pva)、聚丙烯酰胺(pam)、聚(丙烯酸)(paa)、聚乙二醇(peg)、聚环氧乙烷(peo)、乙酸纤维素、淀粉、聚碳酸亚丙酯、聚乙烯醇缩丁醛(pvb)、或其组合;优选地,所述粘结剂为pva、pvb、或其组合。
[0102]
方面18:一种复合材料,包含:聚合物基体;和根据方面1至7中任一项所述的多晶铁氧体组合物,其中所述铁氧体组合物的颗粒尺寸为0.5μm至30μm,优选为1μm至10μm。
[0103]
方面19:根据方面18所述的复合材料,基于所述复合材料的总体积,所述复合材料包含5体积百分比至95体积百分比的所述多晶六方铁氧体。
[0104]
方面20:根据方面18至19中任一项所述的复合材料,其中所述聚合物基体包括聚碳酸酯、聚苯乙烯、聚苯醚、聚酰亚胺(例如,聚醚酰亚胺)、聚丁二烯、聚丙烯腈、聚(c
1-12
烷基)甲基丙烯酸酯(例如,聚甲基丙烯酸甲酯(pmma))、聚酯(例如,聚(对苯二甲酸乙二醇酯)、聚(对苯二甲酸丁二醇酯)、或聚硫酯)、聚烯烃(例如,聚丙烯(pp)、高密度聚乙烯(hdpe)、低密度聚乙烯(ldpe)、或线性低密度聚乙烯(lldpe))、聚酰胺(例如,聚酰胺酰亚胺)、聚芳酯、聚砜(例如,聚芳基砜或聚磺酰胺)、聚(苯硫醚)、聚(苯醚)、聚醚(例如,聚(醚酮)(pek)、聚(醚醚酮)(peek)、聚醚砜(pes))、聚丙烯酸类、聚缩醛、聚苯并唑(例如,聚苯并噻唑或聚苯并噻嗪并吩噻嗪)、聚二唑、聚吡嗪并喹喔啉、聚均苯四酰亚胺、聚喹喔啉、聚苯并咪唑、聚羟吲哚、聚氧代异二氢吲哚(例如,聚二氧代异二氢吲哚)、聚三嗪、聚哒嗪、聚哌嗪、聚吡啶、聚哌啶、聚三唑、聚吡唑、聚吡咯烷、聚碳硼烷、聚氧杂双环壬烷、聚二苯并呋喃、聚苯酞、聚缩醛、聚酐、乙烯基聚合物(例如,聚(乙烯基醚)、聚(乙烯基硫醚)、聚(乙烯醇)、聚(乙烯基酮)、聚(卤乙烯)(例如聚氯乙烯)、聚(乙烯基腈)或聚(乙烯基酯))、聚磺酸酯、聚硫化物、聚脲、聚磷腈、聚硅氮烷、聚硅氧烷、含氟聚合物(例如,聚(氟乙烯)(pvf))、聚(偏二氟乙烯)(pvdf)、氟化乙烯-丙烯(fep)、聚四氟乙烯(ptfe)或聚乙烯四氟乙烯(petfe))、或其组合;优选地,所述聚合物基体包括聚偏二氟乙烯(pvdf)、聚四氟乙烯(ptfe)、聚乙烯(pe)、高密度聚乙烯(hdpe)、低密度聚乙烯(ldpe)、聚甲基丙烯酸甲酯(pmma)、聚醚醚酮(peek)、聚醚砜(pes)、或其组合。
[0105]
方面21:根据方面18至20中任一项所述的复合材料,具有1ghz至10gh的工作频率;在1ghz至10ghz的频率下至少1.5的磁导率(μ);在1ghz至8ghz的频率下小于0.02的磁损耗角正切(tanδ
μ
);在1ghz至10ghz的频率下5至6的介电常数(ε);在1ghz至10ghz的频率下小于0.004的介电损耗角正切(tanδ
ε
);在1ghz至8ghz的频率下或在2ghz至10ghz的频率下小于0.01、或0.008的磁损耗因子(tanδ
μ


);大于8ghz、优选地大于10ghz的截止频率(共振频率,fr);或者前述的组合。
[0106]
方面22:一种制造根据方面18至21中任一项所述的复合材料的方法,所述方法包括:将聚合物、多晶铁氧体组合物、任选的溶剂和任选的添加剂组分合并以形成所述复合材料;以及任选地从所述复合材料中除去所述溶剂。
[0107]
方面23:根据方面22所述的方法,还包括使所述复合材料成形。
[0108]
方面24:根据方面23所述的方法,其中使所述复合材料成形包括压制成型、注射成型、反应注射成型、挤出、轧制、浇铸、或者浸渍或层合到增强介质上。
[0109]
方面25:一种制品,包含根据方面1至7中任一项所述的多晶铁氧体组合物或通过根据方面8至17中任一项所述的方法制造的多晶铁氧体组合物、或者根据方面18至21中任一项所述的复合材料或通过根据方面22至24中任一项所述的方法制造的复合材料。
[0110]
方面26:根据方面25所述的制品,其中所述制品为天线、感应器、变压器、或抗电磁干扰材料。
[0111]
方面27:根据方面25或26所述的制品,其中所述制品为微波装置。
[0112]
通常,组合物、方法和制品可以替代地包括本文所公开的任何成分、步骤或组分,由本文所公开的任何成分、步骤或组分组成,或者基本上由本文所公开的任何成分、步骤或组分组成。组合物、方法和制品可以另外地或者替代地表达、进行、或制造成不含或基本上不含对于实现本权利要求的功能或目的不是必需的任何成分、步骤或组分。
[0113]
没有明确数量词修饰的项目并不表示限制数量,而是表示存在至少一个所提及的项目。除非上下文另外明确指出,否则术语“或”意指“和/或”。涉及相同组分或特性的全部范围的端点包括端点,均是可独立组合的,并且包括全部中间点。除了较宽范围之外的较窄范围或更具体的组的公开并不是对较宽范围或较大组的放弃。“其组合”是开放式的,并且包括一个或更多个指定的要素任选地与一个或更多个未指定的相似要素一起的组合。
[0114]
除非另外限定,否则本文中使用的技术和科学术语具有与本公开所属领域的技术人员通常理解的含义相同的含义。术语“组合”包括共混物、混合物、合金、反应产物等。如本文中所使用的介电常数和磁导率可以在23℃的温度下确定。
[0115]
在整个说明书中对“一个方面”、“一些方面”、“一个实施方案”等的提及意指结合该方面描述的特定要素(例如,特征、结构、步骤或特性)包括在本文中描述的至少一个方面中,并且可以存在或可以不存在于其他方面中。因此,虽然已经描述了特征的某些组合,但是应理解,这些组合仅用于举例说明目的,并且这些特征中的任何特征的任何组合可以在任一组合中以及完全根据一个方面明确地或等同地单独采用,或者与本文中所公开的特征中的任一其他特征组合采用。本文考虑任一和全部这样的组合,并且认为这些组合在本公开的范围内。
[0116]
虽然已经参照示例性方面描述了本公开,但是本领域技术人员将理解,在不脱离本公开的范围的情况下,可以做出各种改变并且等同物可以替代其要素。此外,在不脱离其
实质范围的情况下可以做出许多修改以使特定情况或材料适应于教导。因此,意图是本公开不限于作为实施本发明所预期的最佳方式或唯一方式所公开的特定方面,而是本公开将包括落入所附权利要求书的范围内的所有方面。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献