一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种柔性相变储能传感器及其制备方法与应用

2022-09-15 05:09:21 来源:中国专利 TAG:


1.本发明属于电子材料技术领域,具体涉及一种柔性相变储能传感器及其制备方法与应用。


背景技术:

2.柔性电子传感器是可穿戴智能装备最核心部分之一,根据不同的信号转换机理可以分为电阻型、电容型和压电型等。其中电阻型应变传感器由于结构简单、成本低以及信号采集相对容易而备受关注。长期久坐会造成人体颈椎、肩膀等各种生理疾病;此外,独居老人的健康监测也受到越来越多的关注,因此,具有多功能的智能传感器对于健康防护、助力养老具有重要作用。
3.个人热管理旨在对人体进行局部加热或冷却,而不会将多余的能量浪费在空间供暖或制冷,是以高效和节能的方式保持个人舒适的技术,因其出色的性能而受到广泛关注。此外,传统的空间制冷/加热方法没有考虑个体之间的不同需求。而个人热管理可以调节个人的热量偏好。例如,将个人热管理集成到可穿戴纺织品中可以极大提高个人热舒适度,同时还可以节约能源。因此,将个人热管理与传感技术相结合能防寒保暖,极大地发挥智能传感的作用。
4.专利cn109082266b公开了一种高导热和高蓄热系数的泡沫炭基相变储能传感材料,该材料由薄壁泡沫炭材料,覆盖在薄壁泡沫炭材料表面的导电高分子化合物层,覆盖在导电高分子化合物层表面的无机-有机复合相变材料层或镶嵌在导电高分子化合物层表面的导电高分子化合物/无机-有机复合相变材料核壳胶囊组成。但该材料反映的电信号是温度的变化情况,由其制备的相变材料或者相变温度传感材料不具有柔性和应变传感的功能。专利cn113280938a一种柔性温度传感器,由基底层、导电层、温敏层和封装层组成,但其只具备传感功能,无法实现相变储能传感功能。因此,开发具有相变功能的柔性储能传感器对于医疗监测、健康防护领域具有重要意义。


技术实现要素:

5.本发明的目的在于克服上述现有技术中存在的问题,提供一种柔性相变储能传感器及其制备方法与应用。
6.本发明是通过下述技术方案进行实现的:
7.本发明提供一种柔性相变储能传感器,包括从下往上依次设置的基底层、相变层和导电层;所述基底层为热塑性弹性体纳米纤维膜;所述相变层为混合纤维膜,所述混合纤维膜包括热塑性弹性体和相变材料;所述导电层为热塑性弹性体纤维膜和导电材料的复合物;所述导电层还连接有电极。
8.本发明通过简单的结构设计,制备了一种柔性相变储能传感器。该传感器具有优异的柔性、较好的应变传感性能,同时包含相变层,兼具良好的保温效果,在温度防护及生理监测的智能枕头与智能床垫、智能织物等智能可穿戴装备具有极大的应用前景。
9.作为本发明所述柔性相变储能传感器的优选实施方式,所述纳米纤维膜的厚度为0.5μm~2μm;所述混合纤维膜的厚度为2μm~10μm;所述导电层中,所述导电材料的质量浓度为0.5wt%~2.5wt%。
10.作为本发明所述柔性相变储能传感器的优选实施方式,所述热塑性弹性体为热塑性聚氨酯、热塑性聚乙烯、热塑性聚氯乙烯中的至少一种;所述相变材料为直链烷烃、脂肪酸、脂肪醇中的至少一种。
11.优选地,所述直链烷烃为正十八烷、正二十烷、正二十二烷中的至少一种;所述脂肪酸为月桂酸、硬脂酸、棕榈酸中的至少一种;所述脂肪醇为聚乙二醇。
12.作为本发明所述柔性相变储能传感器的优选实施方式,所述导电材料为mxene、银纳米线、石墨烯、碳化钛中的至少一种。优选地,所述导电材料为一维或二维材料。
13.本发明的另一目的在于提供上述柔性相变储能传感器的制备方法,包括以下步骤:
14.(1)将所述热塑性弹性体溶于有机溶剂,得第一纺丝液;取所述第一纺丝液静电纺丝,得基底层热塑性弹性体纳米纤维膜;
15.(2)将所述热塑性弹性体和相变材料溶于有机溶剂,得第二纺丝液,在所得基底层上取所述第二纺丝液静电纺丝,得相变层混合纤维膜;
16.(3)在所得相变层上取所述热塑性弹性体纳米纤维膜静电纺丝,得薄膜,再将导电材料分散液涂覆在所得薄膜上,得导电层;
17.(4)将电极固定在所得导电层上,再将所述电极连接导线,即成。
18.本发明柔性相变储能传感器的制备方法中采用普通静电纺丝、喷涂技术和/或浸渍技术,制备工艺简单,成本低,为传感器的多功能化,强化其实用性和拓展其应用领域提供了一种新的思路。
19.作为本发明所述柔性相变储能传感器的制备方法的优选实施方式,在所述步骤(1)和(2)中,所述有机溶剂为丙酮和n,n-二甲基甲酰胺的混合溶液,所述丙酮和n,n-二甲基甲酰胺的质量比为1:(1~3)。
20.作为本发明所述柔性相变储能传感器的制备方法的优选实施方式,所述步骤(1)中的第一纺丝液和所述步骤(2)中的第二纺丝液中,所述弹性体的质量分数为15%~25%;所述步骤(2)中,所述弹性体与相变材料的质量比为10:(1~6)。
21.作为本发明所述柔性相变储能传感器的制备方法的优选实施方式,所述步骤(3)中,所述涂覆的方法为喷涂法和/或浸渍法,所述导电材料在导电层中的密度为0.5mg/cm2~2.5mg/cm2。
22.作为本发明所述柔性相变储能传感器的制备方法的优选实施方式,在所述步骤(1)、(2)和(3)中,所述静电纺丝的电压为12kv~16kv,纺丝距离为10cm~15cm,注液速度为0.8ml/h~1.2ml/h;所述步骤(1)和(3)中,所述纺丝的时间为0.5h~1.5h;所述步骤(2)中,所述纺丝的时间为3h~5h。
23.本发明的又一目的在于,提供上述柔性相变储能传感器及其制备方法在智能枕头、智能床垫、智能织物中的应用。
24.本发明具有如下有益效果:
25.(1)本发明的柔性相变储能传感器具有优异的柔韧性、较好的应变传感性能,同时
兼具良好的保温效果,在温度防护及生理监测的智能枕头与智能床垫等智能可穿戴装备具有极大的应用前景。
26.(2)本发明的柔性相变储能传感器结构能很好地防止相变材料的泄露,使得保温效果作用挥发到最大。
27.(3)本发明的制备方法采用普通静电纺丝、喷涂技术和/或浸渍技术,制备工艺简单,同时原料来源广泛、成本低,为传感器的多功能化、强化其实用性和拓展其应用领域提供了一种新的思路。
附图说明
28.图1为实施例1的柔性相变储能传感器的结构示意图;图中1为基底层,2为相变层,3为导电层,4为导线,5为电极;
29.图2为实施例1的柔性相变储能传感器中相变层的扫描电子显微镜俯视图;
30.图3为实施例1的柔性相变储能传感器中导电层的扫描电子显微镜俯视图。
具体实施方式
31.为更好地说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。本领域技术人员应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
32.实施例中所用的试验方法如无特殊说明,均为常规方法;所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
33.实施例1
34.一种柔性相变储能传感器,如图1所示,包括从下往上依次设置的基底层1、相变层2、导电层3,所述的基底层为热塑性聚氨酯(tpu)纳米纤维膜,相变层为tpu与聚乙二醇(peg)混合纳米纤维膜,导电层为tpu和二维mxene的复合物,所述导电层还连接有铜电极5,所述电极通过导线4与外置电路相连。其制备方法如下:
35.(1)将tpu溶于质量比为1:1的丙酮与dmf的混合溶剂中,得第一纺丝液,其中,tpu的质量分数为15%,取所述第一纺丝液进行静电纺丝得基底层热塑性弹性体纤维膜;所述纳米纤维膜的厚度为0.5μm;静电纺丝的电压为12kv,纺丝距离为10cm,注液速度为0.8ml/h,纺丝时间为0.5h;
36.(2)将质量比为10:1的tpu与peg(peg-1000)溶于质量比为1:1的丙酮与dmf的混合溶剂中,得第二纺丝液,其中,tpu的质量分数为15%,在所得基底层上取所述第二纺丝液静电纺丝,得相变层tpu与peg混合纤维膜,所述混合纤维膜的厚度为2μm;所述纺丝的时间为5h,其他纺丝参数同步骤(1);
37.(3)将按照步骤(1)制备tpu纤维膜静电纺丝在步骤(2)所得相变层上,得薄膜,然后采用喷涂法将mxene分散液涂覆在薄膜上,mxene在导电层中的密度为0.5mg/cm2;
38.(4)用银浆将两个铜片电极固定在步骤(3)所得导电层上,用两铜导线分别与两铜电极相连,即成。
39.图1为本实施例柔性相变储能传感器的结构示意图;图2为本实施例柔性相变储能传感器中相变层的扫描电子显微镜俯视图;图3为本实施例柔性相变储能传感器中导电层
的扫描电子显微镜俯视图。
40.将本实施例柔性相变储能传感器用于性能测试,具体步骤如下:将所制备的传感器材料裁剪成长为3cm、宽0.5cm的长方形样条,在20%应变下电阻变化率200%,经过500次循环后,电阻变化率变化差异不超过30%。同时采用红外热成像仪监测传感器在外界温度变化下,测试其温度变化范围。测试发现,在外界温度20℃~60℃变化时,传感器稳定时温度为37.4℃,且放置一个月后测试,传感器温度保持在37.0℃。
41.实施例2
42.一种柔性相变储能传感器,包括从下往上依次设置的基底层、相变层、导电层,所述的基底层为热塑性聚乙烯(tpe)纳米纤维膜,相变层为tpe与peg混合纳米纤维膜,导电层为tpe和二维石墨烯的复合物,所述导电层还连接有铜电极,所述电极通过导线与外置电路相连。其制备方法如下:
43.(1)将tpe溶于质量比为1:1的丙酮与dmf的混合溶剂中,得第一纺丝液,其中,tpe的质量分数为18%,取所述第一纺丝液进行静电纺丝得基底层热塑性弹性体纤维膜;所述纳米纤维膜的厚度为1.2μm;静电纺丝的电压为14kv,纺丝距离为10cm,注液速度为0.8ml/h,纺丝时间为1h;
44.(2)将质量比为10:4的tpe与peg(peg-1000与peg-2000的质量比为1:1)溶于质量比为1:1的丙酮与dmf的混合溶剂中,得第二纺丝液,其中,tpu的质量分数为15%,在所得基底层上取所述第二纺丝液静电纺丝,得相变层tpe与peg混合纤维膜,所述混合纤维膜的厚度为5μm;所述纺丝的时间为4h,其他纺丝参数同步骤(1);
45.(3)将按照步骤(1)制备tpe纤维膜静电纺丝在步骤(2)所得相变层上,得薄膜,然后采用喷涂法将石墨烯分散液涂覆在薄膜上,石墨烯在导电层中的密度为1.5mg/cm2;
46.(4)用银浆将两个铜片电极固定在步骤(3)所得导电层上,用两铜导线分别与两铜电极相连,即得。
47.将本实施例柔性相变储能传感器用于性能测试,具体步骤如下:将所制备的传感器材料裁剪成长为3cm、宽0.5cm的长方形样条,在20%应变下电阻变化率150%,经过500次循环后,电阻变化率变化差异不超过20%。同时采用红外热成像仪监测传感器在外界温度变化下,测试其温度变化范围。测试发现,在外界温度20℃~60℃变化时,传感器稳定时温度为46.3℃,且放置一个月后测试,传感器温度保持在46℃。
48.实施例3
49.一种柔性相变储能传感器,包括从下往上依次设置的基底层、相变层、导电层,所述的基底层为tpu纳米纤维膜,相变层为tpu与peg混合纳米纤维膜,导电层为tpu和二维mxene的复合物,所述导电层还连接有铜电极,所述电极通过导线与外置电路相连。其制备方法如下:
50.(1)将tpu溶于质量比为1:1的丙酮与dmf的混合溶剂中,得第一纺丝液,其中,tpu的质量分数为25%,取所述第一纺丝液进行静电纺丝得基底层热塑性弹性体纤维膜;所述纳米纤维膜的厚度为2μm;静电纺丝的电压为16kv,纺丝距离为10cm,注液速度为0.8ml/h,纺丝时间为1.5h;
51.(2)将质量比为10:6的tpu与peg(peg-2000)溶于质量比为1:1的丙酮与dmf的混合溶剂中,得第二纺丝液,其中,tpu的质量分数为15%,在所得基底层上取所述第二纺丝液静
电纺丝,得相变层tpu与peg混合纤维膜,所述混合纤维膜的厚度为10μm;所述纺丝的时间为5h,其他纺丝参数同步骤(1);
52.(3)将按照步骤(1)制备tpu纤维膜静电纺丝在步骤(2)所得相变层上,得薄膜,然后采用喷涂法将mxene分散液涂覆在薄膜上,mxene在导电层中的密度为2.5mg/cm2;
53.(4)用银浆将两个铜片电极固定在步骤(3)所得导电层上,用两铜导线分别与两铜电极相连,即得。
54.将本实施例柔性相变储能传感器用于性能测试,具体步骤如下:将所制备的传感器材料裁剪成长为3cm、宽0.5cm的长方形样条,在20%应变下电阻变化率180%,经过500次循环后,电阻变化率变化差异不超过25%。同时采用红外热成像仪监测传感器在外界温度变化下,测试其温度变化范围。测试发现,在外界温度20℃~60℃变化时,传感器稳定时温度为52.1℃,且放置一个月后测试,传感器温度保持在50.8℃。
55.实施例4
56.一种柔性相变储能传感器,包括从下往上依次设置的基底层、相变层、导电层,所述的基底层为tpu纳米纤维膜,相变层为tpu与月桂酸混合纳米纤维膜,导电层为tpu和二维mxene的复合物,所述导电层还连接有铜电极,所述电极通过导线与外置电路相连。其制备方法如下:
57.(1)将tpu溶于质量比为1:1的丙酮与dmf的混合溶剂中,得第一纺丝液,其中,tpu的质量分数为15%,取所述第一纺丝液进行静电纺丝得基底层热塑性弹性体纤维膜;所述纳米纤维膜的厚度为0.5μm;静电纺丝的电压为15kv,纺丝距离为10cm,注液速度为1.2ml/h,纺丝时间为0.5h;
58.(2)将质量比为10:3的tpu与月桂酸溶于质量比为1:1的丙酮与dmf的混合溶剂中,得第二纺丝液,其中,tpu的质量分数为15%,在所得基底层上取所述第二纺丝液静电纺丝,得相变层tpu与peg混合纤维膜,所述混合纤维膜的厚度为2.3μm;所述纺丝的时间为3h,其他纺丝参数同步骤(1);
59.(3)将按照步骤(1)制备tpu纤维膜静电纺丝在步骤(2)所得相变层上,得薄膜,然后采用喷涂法将mxene分散液涂覆在薄膜上,mxene在导电层中的密度为0.5mg/cm2;
60.(4)用银浆将两个铜片电极固定在步骤(3)所得导电层上,用两铜导线分别与两铜电极相连,即得。
61.将本实施例柔性相变储能传感器用于性能测试,具体步骤如下:将所制备的传感器材料裁剪成长为3cm、宽0.5cm的长方形样条,在20%应变下电阻变化率220%,经过500次循环后,电阻变化率变化差异不超过20%。同时采用红外热成像仪监测传感器在外界温度变化下,测试其温度变化范围。测试发现,在外界温度20℃~60℃变化时,传感器稳定时温度为43.5℃,且放置一个月后测试,传感器温度保持在42℃。
62.实施例5
63.一种柔性相变储能传感器,包括从下往上依次设置的基底层、相变层、导电层,所述的基底层为tpu纳米纤维膜,相变层为tpu与正二十二烷混合纳米纤维膜,导电层为tpu和二维mxene的复合物,所述导电层还连接有铜电极,所述电极通过导线与外置电路相连。其制备方法如下:
64.(1)将tpu溶于质量比为1:1的丙酮与dmf的混合溶剂中,得第一纺丝液,其中,tpu
的质量分数为20%,取所述第一纺丝液进行静电纺丝得基底层热塑性弹性体纤维膜;所述纳米纤维膜的厚度为1.5μm;静电纺丝的电压为15kv,纺丝距离为12cm,注液速度为1.2ml/h,纺丝时间为1h;
65.(2)将质量比为10:3的tpu与正二十二烷溶于质量比为1:1的丙酮与dmf的混合溶剂中,得第二纺丝液,其中,tpu的质量分数为20%,在所得基底层上取所述第二纺丝液静电纺丝,得相变层tpu与peg混合纤维膜,所述混合纤维膜的厚度为4μm;所述纺丝的时间为4h,其他纺丝参数同步骤(1);
66.(3)将按照步骤(1)制备tpu纤维膜静电纺丝在步骤(2)所得相变层上,得薄膜,然后采用喷涂法将mxene分散液涂覆在薄膜上,mxene在导电层中的密度为1.5mg/cm2;
67.(4)用银浆将两个铜片电极固定在步骤(3)所得导电层上,用两铜导线分别与两铜电极相连,即得。
68.将本实施例柔性相变储能传感器用于性能测试,具体步骤如下:将所制备的传感器材料裁剪成长为3cm、宽0.5cm的长方形样条,在20%应变下电阻变化率250%,经过500次循环后,电阻变化率变化差异不超过15%。同时采用红外热成像仪监测传感器在外界温度变化下,测试其温度变化范围。测试发现,在外界温度20℃~60℃变化时,传感器稳定时温度为43℃,且放置一个月后测试,传感器温度保持在41.5℃。
69.对比例1
70.一种柔性相变储能传感器,包括从下往上依次设置的基底层、相变层、导电层,所述的基底层为热塑性聚氨酯(tpu)纳米纤维膜,相变层为tpu与聚乙二醇(peg)混合纳米纤维膜,导电层为tpu和二维mxene的复合物,所述导电层还连接有铜电极,所述电极通过导线与外置电路相连。其制备方法如下:
71.(1)将tpu溶于质量比为1:1的丙酮与dmf的混合溶剂中,得第一纺丝液,其中,tpu的质量分数为10%,取所述第一纺丝液进行静电纺丝得基底层热塑性弹性体纤维膜;所述纳米纤维膜的厚度为0.2μm;静电纺丝的电压为12kv,纺丝距离为10cm,注液速度为0.8ml/h,纺丝时间为0.5h;
72.(2)将质量比为10:1的tpu与peg(peg-1000)溶于质量比为1:1的丙酮与dmf的混合溶剂中,得第二纺丝液,其中,tpu的质量分数为10%,在所得基底层上取所述第二纺丝液静电纺丝,得相变层tpu与peg混合纤维膜,所述混合纤维膜的厚度为0.8μm;所述纺丝的时间为5h,其他纺丝参数同步骤(1);
73.(3)将按照步骤(1)制备tpu纤维膜静电纺丝在步骤(2)所得相变层上,得薄膜,然后采用喷涂法将mxene分散液涂覆在薄膜上,mxene在导电层中的密度为0.5mg/cm2;
74.(4)用银浆将两个铜片电极固定在步骤(3)所得导电层上,用两铜导线分别与两铜电极相连,即得。
75.将本实施例柔性相变储能传感器用于性能测试,具体步骤如下:将所制备的传感器材料裁剪成长为3cm、宽0.5cm的长方形样条,在20%应变下电阻变化率180%,经过500次循环后,电阻变化率变化差异不超过25%。同时采用红外热成像仪监测传感器在外界温度变化下,测试其温度变化范围。测试发现,在外界温度20℃~60℃变化时,传感器稳定时温度为37.1℃,放置一个月后测试,传感器温度保持在36.2℃。
76.对比例2
77.一种柔性相变储能传感器,包括从下往上依次设置的基底层、相变层、导电层,所述的基底层为热塑性聚氨酯(tpu)纳米纤维膜,相变层为tpu与聚乙二醇(peg)混合纳米纤维膜,导电层为tpu和二维mxene的复合物,所述导电层还连接有铜电极,所述电极通过导线与外置电路相连。其制备方法如下:
78.(1)将tpu溶于质量比为1:1的丙酮与dmf的混合溶剂中,得第一纺丝液,其中,tpu的质量分数为30%,取所述第一纺丝液进行静电纺丝得基底层热塑性弹性体纤维膜;所述纳米纤维膜的厚度为3μm;静电纺丝的电压为12kv,纺丝距离为10cm,注液速度为0.8ml/h,纺丝时间为0.5h;
79.(2)将质量比为10:1的tpu与peg(peg-1000)溶于质量比为1:1的丙酮与dmf的混合溶剂中,得第二纺丝液,其中,tpu的质量分数为30%,在所得基底层上取所述第二纺丝液静电纺丝,得相变层tpu与peg混合纤维膜,所述混合纤维膜的厚度为12μm;所述纺丝的时间为5h,其他纺丝参数同步骤(1);
80.(3)将按照步骤(1)制备tpu纤维膜静电纺丝在步骤(2)所得相变层上,得薄膜,然后采用喷涂法将mxene分散液涂覆在薄膜上,mxene在导电层中的密度为0.5mg/cm2;
81.(4)用银浆将两个铜片电极固定在步骤(3)所得导电层上,用两铜导线分别与两铜电极相连,即得。
82.将本实施例柔性相变储能传感器用于性能测试,具体步骤如下:将所制备的传感器材料裁剪成长为3cm、宽0.5cm的长方形样条,在20%应变下电阻变化率80%,经过500次循环后,电阻变化率变化差异不超过25%。同时采用红外热成像仪监测传感器在外界温度变化下,测试其温度变化范围。测试发现,在外界温度20℃~60℃变化时,传感器稳定时温度为45.2℃,放置一个月后测试,传感器温度保持在43℃。
83.对比例3
84.一种柔性相变储能传感器,包括从下往上依次设置的基底层、相变层、导电层,所述的基底层为热塑性聚氨酯(tpu)纳米纤维膜,相变层为tpu与聚乙二醇(peg)混合纳米纤维膜,导电层为tpu和二维mxene的复合物,所述导电层还连接有铜电极,所述电极通过导线与外置电路相连。其制备方法如下:
85.(1)将tpu溶于质量比为1:1的丙酮与dmf的混合溶剂中,得第一纺丝液,其中,tpu的质量分数为15%,取所述第一纺丝液进行静电纺丝得基底层热塑性弹性体纤维膜;所述纳米纤维膜的厚度为0.5μm;静电纺丝的电压为12kv,纺丝距离为10cm,注液速度为0.8ml/h,纺丝时间为0.5h;
86.(2)将质量比为10:8的tpu与peg(peg-1000)溶于质量比为1:1的丙酮与dmf的混合溶剂中,得第二纺丝液,其中,tpu的质量分数为15%,在所得基底层上取所述第二纺丝液静电纺丝,得相变层tpu与peg混合纤维膜,所述混合纤维膜的厚度为5μm;所述纺丝的时间为5h,其他纺丝参数同步骤(1);
87.(3)将按照步骤(1)制备tpu纤维膜静电纺丝在步骤(2)所得相变层上,得薄膜,然后采用喷涂法将mxene分散液涂覆在薄膜上,mxene在导电层中的密度为0.5mg/cm2;
88.(4)用银浆将两个铜片电极固定在步骤(3)所得导电层上,用两铜导线分别与两铜电极相连,即得。
89.将本实施例柔性相变储能传感器用于性能测试,具体步骤如下:将所制备的传感
器材料裁剪成长为3cm、宽0.5cm的长方形样条,在20%应变下电阻变化率50%,经过500次循环后,电阻变化率变化差异不超过25%。同时采用红外热成像仪监测传感器在外界温度变化下,测试其温度变化范围。测试发现,在外界温度20℃~60℃变化时,传感器稳定时温度为35.8℃,放置一个月后测试,传感器温度保持在37.2℃。
90.最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献